
GNU sem

Page 1

NAME
sem - semaphore for executing shell command lines in parallel

SYNOPSIS
sem [--fg] [--id <id>] [--semaphoretimeout <secs>] [-j <num>] [--wait] command

DESCRIPTION
GNU sem is an alias for GNU parallel --semaphore.

GNU sem acts as a counting semaphore. When GNU sem is called
 with command it starts the
command in the background. When num
 number of commands are running in the background, GNU
sem waits for
 one of these to complete before starting the command.

GNU sem does not read any arguments to build the command (no -a,
 :::, and ::::). It simply waits for a
semaphore to become available
 and then runs the command given.

Before looking at the options you may want to check out the examples
 after the list of options. That
will give you an idea of what GNU sem is capable of.

OPTIONS
command

Command to execute. The command may be followed by arguments for the

command.

--bg

Run command in background thus GNU sem will not wait for
 completion of the
command before exiting. This is the default.

In toilet analogy: GNU sem waits for a toilet to be available,
 gives the toilet to a
person, and exits immediately.

See also: --fg

--jobs N

-j N

--max-procs N

-P N

Run up to N commands in parallel. Default is 1 thus acting like a
 mutex.

In toilet analogy: -j is the number of toilets.

--jobs +N

-j +N

--max-procs +N

-P +N

Add N to the number of CPU cores. Run up to this many jobs in
 parallel. For
compute intensive jobs -j +0 is useful as it will run
 number-of-cpu-cores jobs
simultaneously.

--jobs -N

-j -N

--max-procs -N

-P -N

Subtract N from the number of CPU cores. Run up to this many jobs in
 parallel. If the
evaluated number is less than 1 then 1 will be used.
 See also
--use-cpus-instead-of-cores.

GNU sem

Page 2

--jobs N%

-j N%

--max-procs N%

-P N%

Multiply N% with the number of CPU cores. Run up to this many jobs in
 parallel. If
the evaluated number is less than 1 then 1 will be used.
 See also
--use-cpus-instead-of-cores.

--jobs procfile

-j procfile

--max-procs procfile

-P procfile

Read parameter from file. Use the content of procfile as parameter
 for -j. E.g. procfile
could contain the string 100% or +2 or
 10.

--semaphorename name

--id name

Use name as the name of the semaphore. Default is the name of the
 controlling tty
(output from tty).

The default normally works as expected when used interactively, but
 when used in a
script name should be set. $$ or my_task_name
 are often a good value.

The semaphore is stored in ~/.parallel/semaphores/

In toilet analogy the name corresponds to different types of toilets:
 e.g. male, female,
customer, staff.

--fg

Do not put command in background.

In toilet analogy: GNU sem waits for a toilet to be available,
 takes a person to the
toilet, waits for the person to finish, and
 exits.

--semaphoretimeout secs

--st secs

If secs > 0: If the semaphore is not released within secs
 seconds, take it anyway.

If secs < 0: If the semaphore is not released within secs
 seconds, exit.

In toilet analogy: secs > 0: If no toilet becomes available within secs seconds, pee on
the floor. secs < 0: If no toilet becomes
 available within secs seconds, exit without
doing anything.

--wait

Wait for all commands to complete.

In toilet analogy: Wait until all toilets are empty, then exit.

UNDERSTANDING A SEMAPHORE
Try the following example:

 sem -j 2 'sleep 1;echo 1 finished'; echo sem 1 exited
 sem -j 2 'sleep 2;echo 2 finished'; echo sem 2 exited
 sem -j 2 'sleep 3;echo 3 finished'; echo sem 3 exited
 sem -j 2 'sleep 4;echo 4 finished'; echo sem 4 exited
 sem --wait; echo sem --wait done

In toilet analogy this uses 2 toilets (-j 2). GNU sem takes '1'
 to a toilet, and exits immediately. While '1'

GNU sem

Page 3

is sleeping, another GNU sem takes '2' to a toilet, and exits immediately.

While '1' and '2' are sleeping, another GNU sem waits for a free
 toilet. When '1' finishes, a toilet
becomes available, and this GNU sem stops waiting, and takes '3' to a toilet, and exits
 immediately.

While '2' and '3' are sleeping, another GNU sem waits for a free
 toilet. When '2' finishes, a toilet
becomes available, and this GNU sem stops waiting, and takes '4' to a toilet, and exits
 immediately.

Finally another GNU sem waits for all toilets to become free.

EXAMPLE: Gzipping *.log
Run one gzip process per CPU core. Block until a CPU core becomes
 available.

 for i in *.log ; do
 echo $i
 sem -j+0 gzip $i ";" echo done
 done
 sem --wait

EXAMPLE: Protecting pod2html from itself
pod2html creates two files: pod2htmd.tmp and pod2htmi.tmp which it
 does not clean up. It uses these
two files for a short time. But if
 you run multiple pod2html in parallel (e.g. in a Makefile with make
 -j)
there is a risk that two different instances of pod2html will
 write to the files at the same time:

 # This may fail due to shared pod2htmd.tmp/pod2htmi.tmp files
 foo.html:
 pod2html foo.pod --outfile foo.html

 bar.html:
 pod2html bar.pod --outfile bar.html

 $ make -j foo.html bar.html

You need to protect pod2html from running twice at the same time. sem running as a mutex will make
sure only one runs:

 foo.html:
 sem --id pod2html pod2html foo.pod --outfile foo.html

 bar.html:
 sem --id pod2html pod2html bar.pod --outfile bar.html

 clean: foo.html bar.html
 sem --id pod2html --wait
 rm -f pod2htmd.tmp pod2htmi.tmp

 $ make -j foo.html bar.html clean

BUGS
None known.

REPORTING BUGS
Report bugs to <bug-parallel@gnu.org>.

GNU sem

Page 4

AUTHOR
Copyright (C) 2010-2021 Ole Tange, http://ole.tange.dk and Free
 Software Foundation, Inc.

LICENSE
This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU
General Public License as published by
 the Free Software Foundation; either version 3 of the
License, or
 at your option any later version.

This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without
even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the
 GNU General Public License for more details.

You should have received a copy of the GNU General Public License
 along with this program. If not,
see <https://www.gnu.org/licenses/>.

Documentation license I
Permission is granted to copy, distribute and/or modify this
 documentation under the terms of the
GNU Free Documentation License,
 Version 1.3 or any later version published by the Free Software

Foundation; with no Invariant Sections, with no Front-Cover Texts, and
 with no Back-Cover Texts. A
copy of the license is included in the
 file LICENSES/GFDL-1.3-or-later.txt.

Documentation license II
You are free:

to Share

to copy, distribute and transmit the work

to Remix

to adapt the work

Under the following conditions:

Attribution

You must attribute the work in the manner specified by the author or
 licensor (but not
in any way that suggests that they endorse you or
 your use of the work).

Share Alike

If you alter, transform, or build upon this work, you may distribute
 the resulting work
only under the same, similar or a compatible
 license.

With the understanding that:

Waiver

Any of the above conditions can be waived if you get permission from
 the copyright
holder.

Public Domain

Where the work or any of its elements is in the public domain under
 applicable law,
that status is in no way affected by the license.

Other Rights

In no way are any of the following rights affected by the license:

Your fair dealing or fair use rights, or other applicable
 copyright exceptions and
limitations;

The author's moral rights;

Rights other persons may have either in the work itself or in
 how the work is

GNU sem

Page 5

used, such as publicity or privacy rights.

Notice

For any reuse or distribution, you must make clear to others the
 license terms of this
work.

A copy of the full license is included in the file as
 LICENCES/CC-BY-SA-4.0.txt

DEPENDENCIES
GNU sem uses Perl, and the Perl modules Getopt::Long,
 Symbol, Fcntl.

SEE ALSO
parallel(1)

