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Warning: This document is written to explain the main functions of pbdZMQ (Chen et al.
2015), version 0.1-0. Every effort will be made to ensure future versions are consistent with
these instructions, but features in later versions may not be explained in this document.
Information about the functionality of this package, and any changes in future versions can be
found on website: “Programming with Big Data in R” at https://pbdr.org/ (Ostrouchov
et al. 2012).

1. Introduction
ZeroMQ (0MQ) (Hintjens 2013b)1 is a library for high-performance asynchronous messaging
in scalable distributed applications. It provides APIs in several messaging patterns that, en-
abling developers a standardized way to form connections between different devices, including
laptop computers, mobile devices, servers, clusters, and supercomputers. The APIs also sim-
plify the complex calls to sockets and reduce the burden for developers of handling low-level
network communications. Several popular programming languages provide bindings to these
APIs.
In pbdZMQ, those ZeroMQ APIs are carefully wrapped in R via lower level C code and offers
a few ZeroMQ patterns, including

• request-reply, in particular, one client and a server, and

• push-pull, in particular, one client and a set of servers.

These patterns are useful communication frameworks utilized in the pbdCS (Schmidt and
Chen 2015) that combines two different messaging libraries, namely ZeroMQ and MPI, and
utilizes their respective advantages in:

• user-to-server communication via pbdZMQ, and

• server-to-server computations for statistical programming via pbdMPI (Chen et al.
2012).

2. Installation

2.1. Installing

The pbdZMQ package requires an installation of the ZeroMQ library. So before we may
discuss particulars of installing the R package, we take a moment here to describe the various
ways in which you may install ZeroMQ itself. For convenience, we distribute with the package
a distribution of ZeroMQ, although if you have access to a system installation, that may be
preferable. We separate installation of ZeroMQ into 3 cases:

1. system package manager, such as the libzmq and libzmq-dev packages in Debian-
derived systems,

1Available at https://www.zeromq.org/
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2. pbdZMQ’s internal ZeroMQ library (4.1.0 rc1), or

3. an external ZeroMQ library (4.1.0 rc1 or later).

With System Package Manager This method is perhaps the easiest when a package
managing system is available, such as on Linux, and returns the locations of the libzmq
include and library paths via:

• pkg-config –variable=includedir libzmq and

• pkg-config –variable=libsdir libzmq.

In this setup, installation is very straightforward. From a shell, you can execute:

Shell Command� �
R CMD INSTALL pbdZMQ_0.1 -0.tar.gz� �
Using Internal ZeroMQ This method uses the ZeroMQ library bundled with pbdZMQ,
and should be fairly simple. This method has been successfully tested under Linux, Mac
OSX, Windows, and FreeBSD. Solaris has been tested with no success.
Installation in this way can be simply done by adding the configure argument –enable-internal-zmq.
In practice, this might look something like:

Shell Command� �
R CMD INSTALL pbdZMQ_0.1 -0.tar.gz \

--configure -args="--enable -internal -zmq"� �
Using External ZeroMQ This method assumes you have built your own ZeroMQ library
somewhere, or perhaps one is offered to you by your system administrator. In any event,
this method is only tested under Linux systems. As with the previous method, we were
unsuccessful in our attempts to build on Solaris.
To build ZeroMQ yourself, you might do something like the following:

Shell Command� �
./configure \

--prefix=/usr/local/zmq \
--enable -shared=yes \
--with -poller=select \
--without -documentation \
--without -libsodium

make -j 4
make install� �
which will install the library to /usr/local/zmq/ where /usr/local/zmq/include/ will have
the header file zmq.h and /usr/local/zmq/lib/ will have the shared library file libzmq.so.
With an external ZeroMQ available, we can install pbdZMQ via:
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Shell Command� �
R CMD INSTALL pbdZMQ_0.1 -0.tar.gz \

--configure -vars="ZMQ_INCLUDE='-I/usr/local/zmq/include ' \
ZMQ_LDFLAGS='-L/usr/local/zmq/lib -lzmq '"� �

2.2. Testing the Installation

To make sure that pbdZMQ is installed correctly, one may run a simple “hello world” test
from one terminal to test the library as follows:

Shell Command� �
Rscript -e "demo(hwserver ,'pbdZMQ ',ask=F,echo=F)" &
Rscript -e "demo(hwclient ,'pbdZMQ ',ask=F,echo=F)"� �
This will run 5 iterations of sending and receiving ’Hello World’ messages between two in-
stances (simple server and client).

2.3. Polling System

Note that one may want to use different polling system provided by the ZeroMQ library. By
default, the select method is used in pbdZMQ for Linux, Windows, and Mac OSX. However,
users may want to use autodetect or try others for better polling. Currently, the options as
given by ZeroMQ may be kqueue, epoll, devpoll, poll, or select depending on libraries
and system. You may set the polling method at compile time via:

Shell Command� �
R CMD INSTALL pbdZMQ_0.1 -0.tar.gz \

--configure -vars="ZMQ_POLLER='autodetect '"� �
See the ZeroMQ manual for more details.

3. Examples

The package provides several simple examples based on the ZeroMQ guide for C developers
by Pieter Hintjens (Hintjens 2013a). These are located in the demo/ subdirectory of the pb-
dZMQ package source, and they include:
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Examples Descriptions
hwclient.r hello world client
hwserver.r hello world server
tasksink.r task sink from two workers
taskvent.r task ventilator send jobs to two workers
taskwork.r task workers
wuclient.r weather updating client
wuserver.r weather updating server
mspoller.r using poller to receive messages from multiple sockets
msreader.r receive messages from multiple sockets
mpclient.r hello world client in mpltiple part version
mpserver.r hello world server in mpltiple part version

For instance, the task examples can be run by

Shell Command� �
Rscript taskwork.r &
Rscript taskvent.r
Rscript tasksink.r

### Remember to kill two worker processors at the end , such as
ps -x|grep "file=task.*\.r"|sed "s/\(.*\) pts.*/\1/"|xargs kill -9� �
Or, via demo() function as the hello world example in Section 2.
The weather updating examples can be run by

Shell Command� �
Rscript wuserver.r &
Rscript wuclient.r
rm weather.ipc� �
Or, via demo() function as the hello world example in Section 2.

4. Backwards Compatibility with rzmq

This package currently has a few wrapper functions to offer the same API as that of the
rzmq package (Armstrong 2014). The intent is to offer backwards compatibility as much as
possible, but possibly with a reduced functionality set. Users are encouraged to use native
zmq.*() functions provided by pbdZMQ.
The wrapper functions are:
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Functions
send.socket()
receive.socket()
init.context()
init.socket()
bind.socket()
connect.socket()

5. A Basic Client/Server
In this section, we will develop a more complicated and realistic example using pbdZMQ. The
example will show the construction of a basic client and server. To do so, we will (eventually)
use the Request/Reply pattern, where a message is passed from client to server, executed on
the server, and then the result is passed back to the client as a message.
All server code is meant to be executed in batch; though it can be used from an interactive
R session, we feel this somewhat misses the point. To do this, save the server code as, say,
server.r and start the server by running

Shell Command� �
Rscript server.r� �
from a terminal. One could use R CMD BATCH in place of Rscript, though by default it will
suppress some messages on the server that we will want to see. Finally, the client should be
run inside of an interactive R session. This can be from RStudio, the Windows/Mac R guis,
or by running the command R at the terminal — the way you are used to using R.
Throughout our examples here, we will be using the rzmq-like bindings available in pbdZMQ.
The other interfaces are easy enough to figure out once you understand one of them; and
the rzmq ones are arguably the most R-like of the three. The source code for the final
example can be found in the inst/examples/reqrep/ subtree of the pbdZMQ source, or
under examples/reqrep/ of the binary installation. The same directory contains versions of
this example using the other pbdZMQ interfaces.

5.1. Our First Client/Server

The Server Our first server will be very humble. It will receive one command from the
client, print that command, and send back a success message before terminating — nothing
more. Save the following in a file, say server.r, and execute it by running Rscript server.r
from a terminal:

Server� �
library(pbdZMQ)
ctxt <- init.context ()
socket <- init.socket(ctxt , "ZMQ_REP")
bind.socket(socket , "tcp://*:55555")
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cat("Client command: ")
msg <- receive.socket(socket)
cat(msg , "\n")

send.socket(socket , "Message received!")� �
Unfortunately, the first 4 lines are just boilerplate; see the package manual for an explanation.
The good news is that this is about as complicated as it gets on the ZeroMQ side; everything
beyond this is just R programming.

The Client From and interactive R session (not in batch!), enter the following:

Client� �
library(pbdZMQ)
ctxt <- init.context ()
socket <- init.socket(ctxt , "ZMQ_REQ")
connect.socket(socket , "tcp://localhost :55555")

send.socket(socket , "1+1")
receive.socket(socket)� �
If all goes well, your message (namely, "1+1") should be sent from the client to the server,
and the response "Message received!" should be sent from server to client. Afterwards, the
server will terminate and you are free to exit your interactive R session (i.e., the client).
This example is deliberately as basic as can be, and lacks 2 crucial features: server persistence,
and remote execution of commands. We will develop examples with these features in the
remainder of this section.

5.2. A Persistent Server

The Server Next, we make the server persistent, in the sense that it will not immediately
die after receiving its first command. This is trivial, as all we need to do is encapsulate the
receive/send piece inside a while loop. As before, save the following to a file and execute in
batch via Rscript:

Server� �
library(pbdZMQ)
ctxt <- init.context ()
socket <- init.socket(ctxt , "ZMQ_REP")
bind.socket(socket , "tcp://*:55555")

while(TRUE)
{

cat("Client command: ")
msg <- receive.socket(socket)
cat(msg , "\n")
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send.socket(socket , "Message received!")
}� �
The receive.socket() command does not use busy waiting. You can verify this by starting
up the server and then looking at a process monitor for your operating system; you should
see no elevated activity.

The Client Set up the client as above (everything but the send.socket() line is necessary)
in an interaction R session. Now that we have a persistent server, we can make a shorthand
function that encapsulates sending a message (from client to server) and receiving a response
(from server to client):

Client Send/Receive� �
sendrecv <- function(socket , data)
{

send.socket(socket , data)
receive.socket(socket)

}� �
This assumes that the various optional arguments in send.socket() and receive.socket()
are acceptable; and for the purposes of this demonstration they are. But the reader is en-
couraged to consult the pbdZMQ manual for more details about these two functions.
Now, with the convenience function, we can simply execute:

Client Usage� �
sendrecv(socket , "1+1")
sendrecv(socket , "rnorm (10)")� �
or any other valid R command.

5.3. More Than Messaging

The final piece is to actually execute commands that are sent to the server, and to pass the
result back to the client. This is very easy, and only requires a slight modification to the server
code. Modify the server piece above to do the following just after receiving (and printing)
the client’s message:

Server Modification� �
result <- eval(parse(text=msg))

send.socket(socket , result)� �
Of course, you will also need to remove the original send.socket() line with the one here.
A nasty source of bugs in client/server programming is sending when you should receive or
vice-versa, leading to deadlocks.
One additional thing the observant reader may have already realized is that our client/server
framework leaves the server running perpetually, with no reasonable way for the client to
terminate it. This just requires basic filtering of incoming messages (from the client, on
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the server). So for example, we might want the message "EXIT" to terminate the server.
Modifying the server to handle this is trivial, and we present the full server below:

Full Server� �
library(pbdZMQ)
ctxt <- init.context ()
socket <- init.socket(ctxt , "ZMQ_REP")
bind.socket(socket , "tcp://*:55555")

while(TRUE)
{

cat("Client command: ")
msg <- receive.socket(socket)
cat(msg , "\n")

if (msg == "EXIT")
break

result <- eval(parse(text=msg))

send.socket(socket , result)
}

send.socket(socket , "shutting down!")� �
Notice that we essentially added just a few lines. The first and more obvious is the check on
msg for the magic word "EXIT". The addition of the final send.socket() line at the end,
which returns the string "shutting down!" to the client is necessary to prevent the client
from hanging after the server shuts down. Recall, the client expects a response from the
server for every message the client sends!

5.4. Other Issues

The above examples are all very basic, but should illustrate how one could proceed to a more
complex client/server design using ZeroMQ from R. Of course, there are a host of issues that
we have not gone into here that are very important. For example, we perform no scrubbing of
inputs that are to be executed on the server. This could be more or less important depending
on the application.
Another important issue we have not addressed is error and warning handling. The reader
is encouraged to return to the example in Subsection 5.3 and try executing something like
sendrecv(socket, "object_does_not_exist") or sendrecv(socket, "warning(’uh oh’)")
to see what happens.
Additionally, each time the client wanted to send a message, the user had to manually pass
it as an argument to the function sendrecv(). It is possible — though complicated — to
create a custom REPL which will automatically handle the client/server send-evaluate-receive
pattern as though the user were at a standard R terminal.
Finally, we have not addressed the important issue of logging user commands sent to the
server. Although anyone comfortable with R should see the path forward.
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For a more detailed example illustrating these points, see the pbdCS package.

6. Solaris 10
Solaris 10 with external ZeroMQ 4.0.7 library and GNU tools (OpenCSW) has be tested for
pbdZMQ successfully. The INSTALL.solaris has the steps which basically are

1. install GNU tools from OpenCSW using pkgutil,

2. set path to GNU tools,

3. install external ZeroMQ 4.0.7 library using GNU tools, and

4. install pbdZMQ linked with external ZeroMQ.

The steps are tested without too much time effort for further changes and can quickly provide
a compiled library and install the pbdZMQ. I write down some considerations about ZeroMQ
library here as a note in next.

1. Current, the ZeroMQ library on OpenCSW is 2.2.0 which is too old to be compiled with
pbdZMQ.

2. Newer ZeroMQ (> 4.0.7) can not be compiled with OpenCSW, there are more bugs to
fix for Solaris according github’s pull request.

3. Using Sun CC is even more complicated because there are more compile flags needed
to take care first.

6.1. Have a Solaris 10?

It is easy and has a lot of fun.

1. Install an Oracle VM VirtualBox which is available at https://www.virtualbox.org/.

2. Download a Solaris template from
https://www.oracle.com/technetwork/server-storage/vm/solaris-098101.html.

3. Import the template to the VM.

4. Boot and setup root password, internet, share drives, etc.

5. Done.

The next to do is having compilers by installing OpenCSW first, then install libraries and
software either from OpenCSW website or compile them manually. One can have most GNU
tools and R installed from OpenCSW via pkgutil command, and compile ZeroMQ library
externally using those tools, then install pbdZMQ by linking with the compiled ZeroMQ
library. The details are given in the following Sections.

6.2. OpenCSW
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The OpenCSW (www.opencsw.org) provides binary packages of GNU tools for Solaris 10.
Ideally, gmake, gcc, g++, autoconf, automake, gtar are required which all available from the
website. For example, the gcc is in "gcc4core" package which can be installed with a few
pkgutil commands by

R Script� �
> pkgadd -d https://get.opencsw.org/now
> /opt/csw/bin/pkgutil -U
> /opt/csw/bin/pkgutil -y -i gcc4core
> /usr/sbin/pkgchk -L CSWgcc4core # list files� �
Typically, the binary packages are installed under /opt/csw/.
Make sure those GNU tools are also in the path and export it to the environment. For
example, I have

R Script� �
PATH=/opt/csw/gnu:/opt/csw/bin:/opt/csw/i386 -pc -solaris2 .10/bin:
/usr/sbin:/usr/bin:/usr/openwin/bin:/usr/ucb
export PATH� �
in a file name set_path.sh. Then, I set it to the environment by

R Script� �
> . ./set_path.sh� �
I also have a symbolic link "make" to "gmake" to avoid configuration problems. If not, use ln
-s to make one.
Further, the R may not be easy to compile in Solaris 10, but the binary package of R is also
available in OpenCSW. It can be installed by

R Script� �
> pkgadd -d https://get.opencsw.org/now
> /opt/csw/bin/pkgutil -U
> /opt/csw/bin/pkgutil -y -i r_base
> /usr/sbin/pkgchk -L CSWr -base # list files� �
which has currently R version 3.1.1. It may be a little bit old, but it is good enough for testing
ZeroMQ and pbdZMQ. The developing/daily version of R may not be easily compiled by the
OpenCSW.

6.3. Compile ZeroMQ

The OpenCSW also has binary packages for ZeroMQ, named libzmq1 and libzmq1_dev.
The package is a little bit out of date (version 2.2.0 built in 2012). This old version is not
comparable with current pbdZMQ. The solution is to compile and install an external ZeroMQ
4.0.7 which available from https://download.zeromq.org. This version 4.0.7 is the latest
stable ZeroMQ version. The newer versions of ZeroMQ, such as >= 4.1.0, may have more
bugs for Solaris 10.
I install the ZeroMQ library to /work-my/local/zmq with the following commands.
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R Script� �
> gtar zxvf zeromq -4.0.7. tar.gz
> cd zeromq -4.0.7
> ./configure --prefix=/work -my/local/zmq
> make
> make install� �
There may have some warnings, but they are ok. The default installs the share library which
can be linked by pbdZMQ.

6.4. Install pbdZMQ

With the OpenCSW and external ZeroMQ 4.0.7 installed, I can install pbdZMQ simply via

R Script� �
> R CMD INSTALL pbdZMQ_0.2 -0.tar.gz \

--configure -vars="ZMQ_INCLUDE='-I/work -my/local/zmq/include ' \
ZMQ_LDFLAGS='-L/work -my/local/zmq/lib -lzmq '"� �

Then, the test can be done by

R Script� �
> Rscript -e "demo(hwserver ,'pbdZMQ ',ask=F,echo=F)" &
> Rscript -e "demo(hwclient ,'pbdZMQ ',ask=F,echo=F)"� �
when the pbdZMQ installation is done correctly.

7. FAQs

7.1. ZeroMQ Errors

1. Q: If the package installs successfully, but fails at initialization with

Error Message� �
error: unable to load shared object
'/Users/your_username/Library/R/3.2/library/pbdZMQ/libs/pbdZMQ.so':

dlopen(/.../R/3.2/ library /pbdZMQ/libs/pbdZMQ.so , 6):
Library not loaded: /.../src/zmq/lib/libzmq .4. dylib

Referenced from: /.../R/3.2/ library /pbdZMQ/libs/pbdZMQ.so� �
or

Error Message� �
Library not loaded: /usr/lib/libzmq .4. dylib� �
or

11



Error Message� �
Library not loaded: /usr/lib/libzmq.so .4.0.0� �
A: From the ZeroMQ installation messages:

R Script� �
If you ever happen to want to link against installed libraries
in a given directory , LIBDIR , you must either use libtool , and
specify the full pathname of the library , or use the `-LLIBDIR '
flag during linking and do at least one of the following:

- add LIBDIR to the `LD_LIBRARY_PATH' environment variable
during execution

- add LIBDIR to the `LD_RUN_PATH' environment variable
during linking

- use the `-Wl ,-rpath -Wl ,LIBDIR ' linker flag
- have your system administrator add LIBDIR to

`/etc/ld.so.conf'

See any operating system documentation about shared libraries for
more information , such as the ld(1) and ld.so(8) manual pages.� �
Further, for Mac OSX, the otool and install_name_tool commands are able to find
and modify the linking path of pbdZMQ.so to the library libzmq.4.dylib. See the
source of pbdZMQ/src/install.libs.R for how to change the linking path, accordingly.
The basic steps are:

(a) to use otool -L pbdZMQ.so to figure which libzmq.4.dylib is linked. Note that
pbdZMQ.so should be the one in the installed directory, e.g.
/your_R_library_root_path/library/pbdZMQ/libs/pbdZMQ.so, and

(b) to use install_name_tool -change org_dylib new_dylib pbdZMQ.so to update
to the right new_dylib, e.g.
/your_R_library_root_path/library/pbdZMQ/libs/libzmq.4.dylib.

For linux/unix, the readelf, chrpath, pathelf, ld.so, and /etc/ld.so.conf (de-
pending on systems and compilers) may serve the same roles as the otool and install_name_tool
in Mac OSX.

7.2. ZeroMQ Flags

1. Q: How do I compile and link with ZeroMQ via pbdZMQ for my package which has
C/C++ code that call ZeroMQ functions? A: There are two pbdZMQ functions:
get.zmq.cppflags() and get.zmq.ldflags() that provide flags for compiling with
ZMQ header files and linking against libzmq.so or libzmq.dll, respectivelly. Typ-
ically, these two functions will be envoked inside Makevars and Makevars.win via
Rscript -e ’...’ to return the flags and append to whereever they are needed.
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