
Package ‘luajr’
April 24, 2024

Type Package

Title 'LuaJIT' Scripting

Version 0.1.7

Description An interface to 'LuaJIT' <https://luajit.org>, a just-in-time
compiler for the 'Lua' scripting language <https://www.lua.org>. Allows
users to run 'Lua' code from 'R'.

URL https://github.com/nicholasdavies/luajr,

https://nicholasdavies.github.io/luajr/

BugReports https://github.com/nicholasdavies/luajr/issues

License MIT + file LICENSE

Encoding UTF-8

SystemRequirements GNU make

Suggests Rcpp, crayon, knitr, rmarkdown, testthat (>= 3.0.0)

RoxygenNote 7.3.1

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation yes

Author Mike Pall [aut, cph] (Author of the embedded LuaJIT compiler),
Lua.org, PUC-Rio [cph] (Copyright holders over portions of Lua source
code included in LuaJIT),

Nicholas Davies [cre, ctb, cph] (Author of the R package wrapper,
<https://orcid.org/0000-0002-1740-1412>)

Maintainer Nicholas Davies <nicholas.davies@lshtm.ac.uk>

Repository CRAN

Date/Publication 2024-04-24 16:30:02 UTC

1

https://luajit.org
https://www.lua.org
https://github.com/nicholasdavies/luajr
https://nicholasdavies.github.io/luajr/
https://github.com/nicholasdavies/luajr/issues
https://orcid.org/0000-0002-1740-1412

2 luajr-package

R topics documented:
luajr-package . 2
lua . 3
lua_func . 4
lua_open . 5
lua_parallel . 6
lua_reset . 7
lua_shell . 8

Index 9

luajr-package luajr: LuaJIT Scripting

Description

’luajr’ provides an interface to LuaJIT, a just-in-time compiler for the Lua scripting language. It
allows users to run Lua code from R.

The R API

• lua(): run Lua code

• lua_func(): make a Lua function callable from R

• lua_shell(): run an interactive Lua shell

• lua_open(): create a new Lua state

• lua_reset(): reset the default Lua state

• lua_parallel(): run Lua code in parallel

Further reading

For an introduction to ’luajr’, see vignette("luajr")

Author(s)

Maintainer: Nicholas Davies <nicholas.davies@lshtm.ac.uk> (ORCID) (Author of the R pack-
age wrapper) [contributor, copyright holder]

Authors:

• Mike Pall (Author of the embedded LuaJIT compiler) [copyright holder]

Other contributors:

• Lua.org, PUC-Rio (Copyright holders over portions of Lua source code included in LuaJIT)
[copyright holder]

https://luajit.org
https://www.lua.org
https://orcid.org/0000-0002-1740-1412

lua 3

See Also

Useful links:

• https://github.com/nicholasdavies/luajr

• https://nicholasdavies.github.io/luajr/

• Report bugs at https://github.com/nicholasdavies/luajr/issues

lua Run Lua code

Description

Runs the specified Lua code.

Usage

lua(code, filename = NULL, L = NULL)

Arguments

code Lua code block to run.

filename If non-NULL, name of file to run.

L Lua state in which to run the code. NULL (default) uses the default Lua state for
luajr.

Value

Lua value(s) returned by the code block converted to R object(s). Only a subset of all Lua types can
be converted to R objects at present. If multiple values are returned, these are packaged in a list.

Examples

twelve <- lua("return 3*4")
print(twelve)

https://github.com/nicholasdavies/luajr
https://nicholasdavies.github.io/luajr/
https://github.com/nicholasdavies/luajr/issues

4 lua_func

lua_func Make a Lua function callable from R

Description

Takes any Lua expression that evaluates to a function and provides an R function that can be called
to invoke the Lua function.

Usage

lua_func(func, argcode = "s", L = NULL)

Arguments

func Lua expression evaluating to a function.

argcode How to wrap R arguments for the Lua function.

L Lua state in which to run the code. NULL (default) uses the default Lua state for
luajr.

Details

The R types that can be passed to Lua are: NULL, logical vector, integer vector, numeric vector,
string vector, list, external pointer, and raw.

The parameter argcode is a string with one character for each argument of the Lua function, recy-
cled as needed (e.g. so that a single character would apply to all arguments regardless of how many
there are).

In the following, the corresponding character of argcode for a specific argument is referred to as
its argcode.

For NULL or any argument with length 0, the result in Lua is nil regardless of the corresponding
argcode.

For logical, integer, double, and character vectors, if the corresponding argcode is 's' (simplify),
then if the R vector has length one, it is supplied as a Lua primitive (boolean, number, number, or
string, respectively), and if length > 1, as an array, i.e. a table with integer indices starting at 1. If
the code is 'a', the vector is always supplied as an array, even if it only has length 1. If the argcode
is the digit '1' through '9', this is the same as 's', but the vector is required to have that specific
length, otherwise an error message is emitted.

Still focusing on the same vector types, if the argcode is 'r', then the vector is passed by ref-
erence to Lua, adopting the type luajr.logical_r, luajr.integer_r, luajr.numeric_r, or
luajr.character_r as appropriate. If the argcode is 'v', the vector is passed by value to Lua,
adopting the type luajr.logical, luajr.integer, luajr.numeric, or luajr.character as ap-
propriate.

For a raw vector, only the 's' type is accepted and the result in Lua is a string (potentially with
embedded nulls).

For lists, if the argcode is 's' (simplify), the list is passed as a Lua table. Any entries of the list with
non-blank names are named in the table, while unnamed entries have the associated integer key in

lua_open 5

the table. Note that Lua does not preserve the order of entries in tables. This means that an R list
with names will often go "out of order" when passed into Lua with 's' and then returned back to
R. This is avoided with argcode 'r' or 'v'.

If a list is passed in with the argcode 'r' or 'v', the list is passed to Lua as type luajr.list, and
all vector elements of the list are passed by reference or by value, respectively.

For external pointers, the argcode is ignored and the external pointer is passed to Lua as type user-
data.

When the function is called and Lua values are returned from the function, the Lua return values
are converted to R values as follows.

If nothing is returned, the function returns invisible() (i.e. NULL).

If multiple arguments are returned, a list with all arguments is returned.

Reference types (e.g. luajr.logical_r) and vector types (e.g. luajr.logical) are returned to
R as such. A luajr.list is returned as an R list. Reference and list types respect R attributes set
within Lua code.

A table is returned as a list. In the list, any table entries with a number key come first (with indices
1 to n, i.e. the original number key’s value is discarded), followed by any table entries with a string
key (named accordingly). This may well scramble the order of keys, so beware. Note in particular
that Lua does not guarantee that it will traverse a table in ascending order of keys. Entries with non-
number, non-string keys are discarded. It is probably best to avoid returning a table with anything
other than string keys, or to use luajr.list.

A Lua string with embedded nulls is returned as an R raw type.

Value

An R function which can be called to invoke the Lua function.

Examples

squared <- lua_func("function(x) return x^2 end")
print(squared(7))

lua_open Create a new Lua state

Description

Creates a new, empty Lua state and returns an external pointer wrapping that state.

Usage

lua_open()

6 lua_parallel

Details

All Lua code is executed within a given Lua state. A Lua state is similar to the global environment
in R, in that it is where all variables and functions are defined. luajr automatically maintains a
"default" Lua state, so most users of luajr will not need to use lua_open().

However, if for whatever reason you want to maintain multiple different Lua states at a time, each
with their own independent global variables and functions, lua_open() can be used to create a new
Lua state which can then be passed to lua(), lua_func() and lua_shell() via the L parameter.
These functions will then operate within that Lua state instead of the default one. The default Lua
state can be specified explicitly with L = NULL.

Note that there is currently no way (provided by luajr) of saving a Lua state to disk so that the
state can be restarted later. Also, there is no lua_close in luajr because Lua states are closed
automatically when they are garbage collected in R.

Value

External pointer wrapping the newly created Lua state.

Examples

L1 <- lua_open()
lua("a = 2")
lua("a = 4", L = L1)
lua("print(a)") # 2
lua("print(a)", L = L1) # 4

lua_parallel Run Lua code in parallel

Description

Runs a Lua function multiple times, with function runs divided among multiple threads.

Usage

lua_parallel(func, n, threads, pre = NA_character_)

Arguments

func Lua expression evaluating to a function.

n Number of function executions.

threads Number of threads to create, or a list of existing Lua states (e.g. as created by
lua_open()), all different, one for each thread.

pre Lua code block to run once for each thread at creation.

lua_reset 7

Details

This function is experimental. Its interface and behaviour are likely to change in subsequent ver-
sions of luajr.

lua_parallel() works as follows. A number threads of new Lua states is created with the
standard Lua libraries and the luajr module opened in each (i.e. as though the states were created
using lua_open()). Then, a thread is launched for each state. Within each thread, the code in pre
is run in the corresponding Lua state. Then, func(i) is called for each i in 1:n, with the calls
spread across the states. Finally, the Lua states are closed and the results are returned in a list.

Instead of an integer, threads can be a list of Lua states, e.g. NULL for the default Lua state or a
state returned by lua_open(). This saves the time needed to open the new states, which takes a few
milliseconds.

Value

List of n values returned from the Lua function func.

Safety and performance

Note that func has to be thread-safe. All pure Lua code and built-in Lua library functions are
thread-safe, except for certain functions in the built-in os and io libraries (search for "thread safe"
in the Lua 5.2 reference manual).

Additionally, use of luajr reference types is not thread-safe because these use R to allocate and man-
age memory, and R is not thread-safe. This means that you cannot safely use luajr.logical_r,
luajr.integer_r, luajr.numeric_r, luajr.character_r, or other reference types within func.
luajr.list and luajr.dataframe are fine, provided the list entries / dataframe columns are value
types.

There is overhead associated with creating new Lua states and with gathering all the function results
in an R list. It is advisable to check whether running your Lua code in parallel actually gives a
substantial speed increase.

Examples

lua_parallel("function(i) return i end", n = 4, threads = 2)

lua_reset Reset the default Lua state

Description

Clears out all variables from the default Lua state, freeing up the associated memory.

Usage

lua_reset()

https://www.lua.org/manual/5.2/manual.html

8 lua_shell

Details

This resets the default Lua state only. To reset a non-default Lua state L returned by lua_open(),
just do L <- lua_open() again. The memory previously used will be cleaned up at the next garbage
collection.

Value

None.

Examples

lua("a = 2")
lua_reset()
lua("print(a)") # nil

lua_shell Run an interactive Lua shell

Description

When in interactive mode, provides a basic read-eval-print loop with LuaJIT.

Usage

lua_shell(L = NULL)

Arguments

L Lua state in which to run the code. NULL (default) uses the default Lua state for
luajr.

Details

As a convenience, lines starting with an equals sign have the "=" replaced with "return ", so that
e.g. entering =x will show the value of x as returned to R.

Value

None.

Index

lua, 3
Lua state, 3, 4, 8
lua(), 2, 6
lua_func, 4
lua_func(), 2, 6
lua_open, 5
lua_open(), 2, 6–8
lua_parallel, 6
lua_parallel(), 2, 7
lua_reset, 7
lua_reset(), 2
lua_shell, 8
lua_shell(), 2, 6
luajr (luajr-package), 2
luajr-package, 2

9

	luajr-package
	lua
	lua_func
	lua_open
	lua_parallel
	lua_reset
	lua_shell
	Index

