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block_index Find independent blocks of equations.

Description

Find independent blocks of equations.

Usage

block_index(A, eps = 1e-08)

Arguments

A [numeric] Matrix

eps [numeric] Coefficients with absolute value < eps are treated as zero.

Value

A list containing numeric vectors, each vector indexing an independent block of rows in the
system Ax <= b.

Examples

A <- matrix(c(
1,0,2,0,0,
3,0,4,0,0,
0,5,0,6,7,
0,8,0,0,9

),byrow=TRUE,nrow=4)
b <- rep(0,4)
bi <- block_index(A)
lapply(bi,function(ii) compact(A[ii,,drop=FALSE],b=b[ii])$A)
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compact Remove spurious variables and restrictions

Description

A system of linear (in)equations can be compactified by removing zero-rows and zero-columns
(=variables). Such rows and columns may arise after substitution (see subst_value) or eliminaton
of a variable (see eliminate).

Usage

compact(
A,
b,
x = NULL,
neq = nrow(A),
nleq = 0,
eps = 1e-08,
remove_columns = TRUE,
remove_rows = TRUE,
deduplicate = TRUE,
implied_equations = TRUE

)

Arguments

A [numeric] matrix

b [numeric] vector

x [numeric] vector

neq [numeric] The first neq rows in A and b are treated as linear equalities.

nleq [numeric] The nleq rows after neq are treated as inequations of the form a.x<=b.
All remaining rows are treated as strict inequations of the form a.x<b.

eps [numeric] Anything with absolute value < eps is considered zero.

remove_columns [logical] Toggle remove spurious columns from A and variables from x

remove_rows [logical] Toggle remove spurious rows

deduplicate [logical] Toggle remove duplicate rows
implied_equations

[logical] replace cases of a.x<=b and a.x>=b with a.x==b.

Value

A list with the following elements.

• A: The compactified version of input A
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• b: The compactified version of input b

• x: The compactified version of input x

• neq: number of equations in new system

• nleq: number of inequations of the form a.x<=b in the new system

• cols_removed: [logical] indicates what elements of x (columns of A) have been removed

Details

It is assumend that the system of equations is in normalized form (see link{normalize}).

echelon Reduced row echelon form

Description

Transform the equalities in a system of linear (in)equations or Reduced Row Echelon form (RRE)

Usage

echelon(A, b, neq = nrow(A), nleq = 0, eps = 1e-08)

Arguments

A [numeric] matrix

b [numeric] vector

neq [numeric] The first neq rows of A, b are treated as equations.

nleq [numeric] The nleq rows after neq are treated as inequations of the form a.x<=b.
All remaining rows are treated as strict inequations of the form a.x<b.

eps [numeric] Values of magnitude less than eps are considered zero (for the pur-
pose of handling machine rounding errors).

Value

A list with the following components:

• A: the A matrix with equalities transformed to RRE form.

• b: the constant vector corresponding to A

• neq: the number of equalities in the resulting system.

• nleq: the number of inequalities of the form a.x <= b. This will only be passed to the output.
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Details

The parameters A, b and neq describe a system of the form Ax<=b, where the first neq rows are
equalities. The equalities are transformed to RRE form.

A system of equations is in reduced row echelon form when

• All zero rows are below the nonzero rows

• For every row, the leading coefficient (first nonzero from the left) is always right of the leading
coefficient of the row above it.

• The leading coefficient equals 1, and is the only nonzero coefficient in its column.

Examples

echelon(
A = matrix(c(

1,3,1,
2,7,3,
1,5,3,
1,2,0), byrow=TRUE, nrow=4)

, b = c(4,-9,1,8)
, neq=4

)

eliminate Eliminate a variable from a set of edit rules

Description

Eliminating a variable amounts to deriving all (non-redundant) linear (in)equations not containing
that variable. Geometrically, it can be interpreted as a projection of the solution space (vectors
satisfying all equations) along the eliminated variable’s axis.

Usage

eliminate(
A,
b,
neq = nrow(A),
nleq = 0,
variable,
H = NULL,
h = 0,
eps = 1e-08

)

https://en.wikipedia.org/wiki/Row_echelon_form


6 eliminate

Arguments

A [numeric] Matrix

b [numeric] vector

neq [numeric] The first neq rows in A and b are treated as linear equalities.

nleq [numeric] The nleq rows after neq are treated as inequations of the form a.x<=b.
All remaining rows are treated as strict inequations of the form a.x<b.

variable [numeric|logical|character] Index in columns of A, representing the vari-
able to eliminate.

H [numeric] (optional) Matrix indicating how linear inequalities have been de-
rived.

h [numeric] (optional) number indicating how many variables have been elimi-
nated from the original system using Fourier-Motzkin elimination.

eps [numeric] Coefficients with absolute value <= eps are treated as zero.

Value

A list with the folowing components

• A: the A corresponding to the system with variables eliminated.

• b: the constant vector corresponding to the resulting system

• neq: the number of equations

• H: The memory matrix storing how each row was derived

• h: The number of variables eliminated from the original system.

Details

For equalities Gaussian elimination is applied. If inequalities are involved, Fourier-Motzkin elimi-
nation is used. In principle, FM-elimination can generate a large number of redundant inequations,
especially when applied recursively. Redundancies can be recognized by recording how new in-
equations have been derived from the original set. This is stored in the H matrix when multiple
variables are to be eliminated (Kohler, 1967).

References

D.A. Kohler (1967) Projections of convex polyhedral sets, Operational Research Center Report ,
ORC 67-29, University of California, Berkely.

H.P. Williams (1986) Fourier’s method of linear programming and its dual. American Mathematical
Monthly 93, pp 681-695.

Examples

# Example from Williams (1986)
A <- matrix(c(

4, -5, -3, 1,
-1, 1, -1, 0,
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1, 1, 2, 0,
-1, 0, 0, 0,
0, -1, 0, 0,
0, 0, -1, 0),byrow=TRUE,nrow=6)

b <- c(0,2,3,0,0,0)
L <- eliminate(A=A, b=b, neq=0, nleq=6, variable=1)

is_feasible Check feasibility of a system of linear (in)equations

Description

Check feasibility of a system of linear (in)equations

Usage

is_feasible(A, b, neq = nrow(A), nleq = 0, eps = 1e-08, method = "elimination")

Arguments

A [numeric] matrix

b [numeric] vector

neq [numeric] The first neq rows in A and b are treated as linear equalities.

nleq [numeric] The nleq rows after neq are treated as inequations of the form a.x<=b.
All remaining rows are treated as strict inequations of the form a.x<b.

eps [numeric] Absolute values < eps are treated as zero.

method [character] At the moment, only the ’elimination’ method is implemented.

Examples

# An infeasible system:
# x + y == 0
# x > 0
# y > 0
A <- matrix(c(1,1,1,0,0,1),byrow=TRUE,nrow=3)
b <- rep(0,3)
is_feasible(A=A,b=b,neq=1,nleq=0)

# A feasible system:
# x + y == 0
# x >= 0
# y >= 0
A <- matrix(c(1,1,1,0,0,1),byrow=TRUE,nrow=3)
b <- rep(0,3)
is_feasible(A=A,b=b,neq=1,nleq=2)
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is_totally_unimodular Test for total unimodularity of a matrix.

Description

Check wether a matrix is totally unimodular.

Usage

is_totally_unimodular(A)

Arguments

A An object of class matrix.

Details

A matrix for which the determinant of every square submatrix equals −1, 0 or 1 is called totally
unimodular. This function tests wether a matrix with coefficients in {−1, 0, 1} is totally unimodular.
It tries to reduce the matrix using the reduction method described in Scholtus (2008). Next, a test
based on Heller and Tompkins (1956) or Raghavachari is performed.

Value

logical

References

Heller I and Tompkins CB (1956). An extension of a theorem of Danttzig’s In kuhn HW and Tucker
AW (eds.), pp. 247-254. Princeton University Press.

Raghavachari M (1976). A constructive method to recognize the total unimodularity of a matrix.
_Zeitschrift fur operations research_, *20*, pp. 59-61.

Scholtus S (2008). Algorithms for correcting some obvious inconsistencies and rounding errors in
business survey data. Technical Report 08015, Netherlands.

Examples

# Totally unimodular matrix, reduces to nothing
A <- matrix(c(
1,1,0,0,0,
-1,0,0,1,0,
0,0,01,1,0,
0,0,0,-1,1),nrow=5)

is_totally_unimodular(A)

# Totally unimodular matrix, by Heller-Tompson criterium
A <- matrix(c(

https://en.wikipedia.org/wiki/Unimodular_matrix
https://en.wikipedia.org/wiki/Unimodular_matrix
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1,1,0,0,
0,0,1,1,
1,0,1,0,
0,1,0,1),nrow=4)

is_totally_unimodular(A)

# Totally unimodular matrix, by Raghavachani recursive criterium
A <- matrix(c(

1,1,1,
1,1,0,
1,0,1))

is_totally_unimodular(A)

lintools Tools for manipulating linear systems of (in)equations

Description

This package offers a basic and consistent interface to a number of operations on linear systems of
(in)equations not available in base R. Except for the projection on the convex polytope, operations
are currently supported for dense matrices only.

Details

The following operations are implemented.

• Split matrices in independent blocks

• Remove spurious rows and columns from a system of (in)equations

• Rewrite equalities in reduced row echelon form

• Eliminate variables through Gaussian or Fourier-Motzkin elimination

• Determine the feasibility of a system of linear (in)equations

• Compute Moore-Penrose Pseudoinverse

• Project a vector onto the convec polytope described by a set of linear (in)equations

• Simplify a system by substituting values

Most functions assume a system of (in)equations to be stored in a standard form. The normalize
function can bring any system of equations to this form.



10 normalize

normalize Bring a system of (in)equalities in a standard form

Description

Bring a system of (in)equalities in a standard form

Usage

normalize(A, b, operators, unit = 0)

Arguments

A [numeric] Matrix

b [numeric] vector

operators [character] operators in {<,<=,==,>=,>}.

unit [numeric] (nonnegative) Your unit of measurement. This is used to replace
strict inequations of the form a.x < b with a.x <= b-unit. Typically, unit is
related to the units in which your data is measured. If unit is 0, inequations are
not replaced.

Value

A list with the folowing components

• A: the A corresponding to the normalized sytem.

• b: the constant vector corresponding to the normalized system

• neq: the number of equations

• nleq: the number of non-strict inequations (<=)

• order: the index vector used to permute the original rows of A.

Details

For this package, a set of equations is in normal form when

• The first neq rows represent linear equalities.

• The next nleq rows represent inequalities of the form a.x <= b

• All other rows are strict inequalities of the form a.x < b

If unit>0, the strict inequalities a.x < b are replaced with inequations of the form a.x <= b-unit,
where unit represents the precision of measurement.
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Examples

A <- matrix(1:12,nrow=4)
b <- 1:4
ops <- c("<=","==","==","<")
normalize(A,b,ops)
normalize(A,b,ops,unit=0.1)

pinv Moore-Penrose pseudoinverse

Description

Compute the pseudoinverse of a matrix using the SVD-construction

Usage

pinv(A, eps = 1e-08)

Arguments

A [numeric] matrix
eps [numeric] tolerance for determining zero singular values

Details

The Moore-Penrose pseudoinverse (sometimes called the generalized inverse) A+ of a matrix A
has the property that A+AA+ = A. It can be constructed as follows.

• Compute the singular value decomposition A = UDV T

• Replace diagonal elements in D of which the absolute values are larger than some limit eps
with their reciprocal values

• Compute A+ = UDV T

References

S Lipshutz and M Lipson (2009) Linear Algebra. In: Schuam’s outlines. McGraw-Hill

Examples

A <- matrix(c(
1, 1, -1, 2,
2, 2, -1, 3,
-1, -1, 2, -3

),byrow=TRUE,nrow=3)
# multiply by 55 to retrieve whole numbers
pinv(A) * 55
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project Project a vector on the border of the region defined by a set of linear
(in)equality restrictions.

Description

Compute a vector, closest to x in the Euclidean sense, satisfying a set of linear (in)equality restric-
tions.

Usage

project(
x,
A,
b,
neq = length(b),
w = rep(1, length(x)),
eps = 0.01,
maxiter = 1000L

)

Arguments

x [numeric] Vector that needs to satisfy the linear restrictions.

A [matrix] Coefficient matrix for linear restrictions.

b [numeric] Right hand side of linear restrictions.

neq [numeric] The first neq rows in A and b are treated as linear equalities. The
others as Linear inequalities of the form Ax <= b.

w [numeric] Optional weight vector of the same length as x. Must be positive.

eps The maximum allowed deviation from the constraints (see details).

maxiter maximum number of iterations

Value

A list with the following entries:

• x: the adjusted vector

• status: Exit status:

– 0: success
– 1: could not allocate enough memory (space for approximately 2(m + n) doubles is

necessary).
– 2: divergence detected (set of restrictions may be contradictory)
– 3: maximum number of iterations reached

• eps: The tolerance achieved after optimizing (see Details).
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• iterations: The number of iterations performed.

• duration: the time it took to compute the adjusted vector

• objective: The (weighted) Euclidean distance between the initial and the adjusted vector

Details

The tolerance eps is defined as the maximum absolute value of the difference vector Ax − b for
equalities. For inequalities, the difference vector is set to zero when it’s value is lesser than zero
(i.e. when the restriction is satisfied). The algorithm iterates until either the tolerance is met, the
number of allowed iterations is exceeded or divergence is detected.

See Also

sparse_project

Examples

# the system
# x + y = 10
# -x <= 0 # ==> x > 0
# -y <= 0 # ==> y > 0
#
A <- matrix(c(

1,1,
-1,0,
0,-1), byrow=TRUE, nrow=3

)
b <- c(10,0,0)

# x and y will be adjusted by the same amount
project(x=c(4,5), A=A, b=b, neq=1)

# One of the inequalies violated
project(x=c(-1,5), A=A, b=b, neq=1)

# Weighted distances: 'heavy' variables change less
project(x=c(4,5), A=A, b=b, neq=1, w=c(100,1))

# if w=1/x0, the ratio between coefficients of x0 stay the same (to first order)
x0 <- c(x=4,y=5)
x1 <- project(x=x0,A=A,b=b,neq=1,w=1/x0)

x0[1]/x0[2]
x1$x[1] / x1$x[2]
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ranges Derive variable ranges from linear restrictions

Description

Gaussian and/or Fourier-Motzkin elimination is used to derive upper and lower limits implied by a
system of (in)equations.

Usage

ranges(A, b, neq = nrow(A), nleq = 0, eps = 1e-08)

Arguments

A [numeric] Matrix

b [numeric] vector

neq [numeric] The first neq rows in A and b are treated as linear equalities.

nleq [numeric] The nleq rows after neq are treated as inequations of the form a.x<=b.
All remaining rows are treated as strict inequations of the form a.x<b.

eps [numeric] Coefficients with absolute value <= eps are treated as zero. using
Fourier-Motzkin elimination.

sparse_constraints Generate sparse set of constraints.

Description

Generate a constraint set to be used by sparse_project

Usage

sparse_constraints(object, ...)

sparseConstraints(object, ...)

## S3 method for class 'data.frame'
sparse_constraints(object, b, neq = length(b), base = 1L, sorted = FALSE, ...)

## S3 method for class 'sparse_constraints'
print(x, range = 1L:10L, ...)
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Arguments

object R object to be translated to sparse_constraints format.

... options to be passed to other methods

b Constant vector

neq The first new equations are interpreted as equality constraints, the rest as ’<=’

base are the indices in object[,1:2] base 0 or base 1?

sorted is object sorted by the first column?

x an object of class sparse_constraints

range integer vector stating which constraints to print

Value

Object of class sparse_constraints (see details).

Note

As of version 0.1.1.0, sparseConstraints is deprecated. Use sparse_constraints instead.

Details

The sparse_constraints objects holds coefficients of A and b of the system Ax ≤ b in sparse
format, outside of R’s memory. It can be reused to find solutions for vectors to adjust.

In R, it is a reference object. In particular, it is meaningless to

• Copy the object. You only will only generate a pointer to physically the same object.

• Save the object. The physical object is destroyed when R closes, or when R’s garbage collector
cleans up a removed sparse_constraints object.

The $project method

Once a sparse_constraints object sc is created, you can reuse it to optimize several vectors by
calling sc$project() with the following parameters:

• x: [numeric] the vector to be optimized

• w: [numeric] the weight vector (of length(x)). By default all weights equal 1.

• eps: [numeric] desired tolerance. By default 10−2

• maxiter: [integer] maximum number of iterations. By default 1000.

The return value of $spa is the same as that of sparse_project.

See Also

sparse_project, project
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Examples

# The following system of constraints, stored in
# row-column-coefficient format
#
# x1 + x8 == 950,
# x3 + x4 == 950 ,
# x6 + x7 == x8,
# x4 > 0
#
A <- data.frame(

row = c( 1, 1, 2, 2, 3, 3, 3, 4)
, col = c( 1, 2, 3, 4, 2, 5, 6, 4)
, coef = c(-1,-1,-1,-1, 1,-1,-1,-1)

)
b <- c(-950, -950, 0,0)

sc <- sparse_constraints(A, b, neq=3)

# Adjust the 0-vector minimally so all constraints are met:
sc$project(x=rep(0,8))

# Use the same object to adjust the 100*1-vector
sc$project(x=rep(100,8))

# use the same object to adjust the 0-vector, but with different weights
sc$project(x=rep(0,8),w=1:8)

sparse_project Successive projections with sparsely defined restrictions

Description

Compute a vector, closest to x satisfying a set of linear (in)equality restrictions.

Usage

sparse_project(
x,
A,
b,
neq = length(b),
w = rep(1, length(x)),
eps = 0.01,
maxiter = 1000L,
...

)
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Arguments

x [numeric] Vector to optimize, starting point.

A [data.frame] Coeffiencient matrix in [row,column,coefficient] format.

b [numeric] Constant vector of the system Ax ≤ b

neq [integer] Number of equalities

w [numeric] weight vector of same length of x

eps maximally allowed tolerance

maxiter maximally allowed number of iterations.

... extra parameters passed to sparse_constraints

Value

A list with the following entries:

• x: the adjusted vector

• status: Exit status:

– 0: success
– 1: could not allocate enough memory (space for approximately 2(m + n) doubles is

necessary).
– 2: divergence detected (set of restrictions may be contradictory)
– 3: maximum number of iterations reached

• eps: The tolerance achieved after optimizing (see Details).

• iterations: The number of iterations performed.

• duration: the time it took to compute the adjusted vector

• objective: The (weighted) Euclidean distance between the initial and the adjusted vector

Details

The tolerance eps is defined as the maximum absolute value of the difference vector Ax − b for
equalities. For inequalities, the difference vector is set to zero when it’s value is lesser than zero
(i.e. when the restriction is satisfied). The algorithm iterates until either the tolerance is met, the
number of allowed iterations is exceeded or divergence is detected.

See Also

project, sparse_constraints

Examples

# the system
# x + y = 10
# -x <= 0 # ==> x > 0
# -y <= 0 # ==> y > 0
# Defined in the row-column-coefficient form:
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A <- data.frame(
row = c(1,1,2,3)

, col = c(1,2,1,2)
, coef= c(1,1,-1,-1)

)
b <- c(10,0,0)

sparse_project(x=c(4,5),A=A,b=b)

subst_value Substitute a value in a system of linear (in)equations

Description

Substitute a value in a system of linear (in)equations

Usage

subst_value(A, b, variables, values, remove_columns = FALSE, eps = 1e-08)

Arguments

A [numeric] matrix

b [numeric] vector

variables [numeric|logical|character] vector of column indices in A

values [numeric] vecor of values to substitute.

remove_columns [logical] Remove spurious columns when substituting?

eps [numeric] scalar. Any value with absolute value below eps will be interpreted
as zero.

Value

A list with the following components:

• A: the A corresponding to the simplified sytem.

• b: the constant vector corresponding to the new system

Details

A system of the form Ax <= b can be simplified if one or more of the x[i] values is fixed.
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