Package ‘kanjistat’

May 23, 2023
Type Package

Title A Statistical Framework for the Analysis of Japanese Kanji
Characters

Version 0.9.1

Date 2023-05-22

Maintainer Dominic Schuhmacher <dominic.schuhmacher@mathematik.uni-goettingen.de>

Description Various tools and data sets that support the study of kanji, including their morphol-
ogy, decomposition and concepts of distance and similarity between them.

URL https://dschuhmacher.github.io/kanjistat/

BugReports https://github.com/dschuhmacher/kanjistat/issues
Depends R (>=3.5)

Imports methods, graphics, grDevices, gsubfn, utils, crayon,
dendextend, png, purrr, rlang, ROI, sysfonts, showtext,
stringi, stringr, transport, xml2, lifecycle

Suggests dplyr, knitr, rmarkdown, ROLplugin.glpk, systemfonts,
testthat (>= 3.0.0), tibble, withr

License GPL (>=3)
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no

Author Dominic Schuhmacher [aut, cre]
(<https://orcid.org/0000-0001-7079-6313>)

Repository CRAN
Date/Publication 2023-05-23 09:00:10 UTC

https://dschuhmacher.github.io/kanjistat/
https://github.com/dschuhmacher/kanjistat/issues
https://orcid.org/0000-0001-7079-6313

2

R topics documented:

cjk_escape

CIK_@SCaPe o . e e e 2
codepoint e e e e e 3
fivebetas L e 4
fivetrees e 4
GEE_StOKES e e e e 5
Et_StrOKeS_COMPO« o v vttt e e e e e e e e 6
kanjidata 7
kanjidist 8
kanjidistmat 10
kanjimat L 12
kanjivec L L e e 13
kmatdist L e 16
kmatdistmat e e 17
kreadmean e 18
lookup e e 18
OPLIONS .+ v v v v e 19
plotkanjimat e e e e 20
plotkanjivec L e e e e e e 20
plotkanji 22
printkanjivec 24
samplekan L 24
strkanjivec L L. 25
Index 26
cjk_escape Replace CJK characters in files by escape sequences
Description

All CJK characters in the file(s) found at the specified path are substituted by their Unicode escape

sequences (\u + 4 digit hex number or \U + 8 digit hex number where necessary).

Usage

cjk_escape(path, outdir = NULL, verbose = TRUE)

Arguments
path the path to a directory or a single file.
outdir the directory where the output files are written. Defaults to the subdirectory out

of the directory in path. The output files have the same names as the originals.

verbose whether to print a message for each output file.

codepoint 3

Details

If path is a directory, the replacement is performed for all files at that location (subdirectories are
ignored). If outdir is the same as path, the original files are overwritten without warning.

If path is a file, the replacement is limited to this file. If outdir is the same as dirname(path), the
files are overwritten without warning.

Value

No return value, called for side effects.

codepoint Convert between Unicode codepoint and kanji

Description

Given codepoints cp, the function codepointToKanji transforms to UTF-8, which will typically
show as the actual character the codepoints stands for. Vice versa, given (UTF-8 encoded) kanjis
kan, the function kanjiToCodepoint transforms to unicode codepoints.

Usage

codepointToKanji(cp, concat = FALSE)

kanjiToCodepoint(kan, character = FALSE)

Arguments
cp a vector of character strings or objects of class hexmode, representing hexadeci-
mal numbers.
concat logical. Shall the returned characters be concatenated?
kan a vector of kanjis (strings of length 1) or a single string of length >= 1 of kanjis.
character logical. Shall the returned codepoints be of class "character" or hexmode.
Value

For codepointToKanji a character vector of kanji. For kanjiToCodepoint a vector of hexadeci-
mal numbers (class hexmode).

Examples

codepointToKanji(c("51b7", "6696", "71b1"))
kanjiToCodepoint ("\u51b7\u6696\u71b1")

4 fivetrees

fivebetas A sample list of kanjivec objects

Description

A sample list of kanjivec objects

Usage

fivebetas

Format

fivebetas is alist of five kanjivec objects representing the basic kanji \u90e8,\u969¢,\u966a,\u90f5,\u9663
containing "beta" components, which come in fact from two different classical radicals:

* \u961c—>\u2ed6 on the left: mound, small village
* \u9091—>\u2ecf on the right: large village

Source

The list has been generated with the function kanjivec with parameter flatten="intelligent”
from the corresponding files in the KanjiVG database by Ulrich Apel (https://kanjivg.tagaini.
net/).

Examples

oldpar <- par(mfrow = c(1,5), mai = rep(0,4))
invisible(lapply(fivebetas, plot, seg_depth = 2))
par(oldpar)

fivetrees Sample lists of kanjimat objects

Description

Sample lists of kanjimat objects

Usage

fivetreesl
fivetrees2

fivetrees3

https://kanjivg.tagaini.net/
https://kanjivg.tagaini.net/

get_strokes 5

Format

fivetreesl, fivetrees2 and fivetrees3 are lists of five kanjimat objects each, representing
the same five basic kanji \u6821,\u6728,\u4f11,\u6797,\u76f8, containing each a tree component.
Their matrices are antialiased 64 x 64 pixel representations of the kanji. The size is chosen as a
compromise between aesthetics and memory/computational cost, such as for kmatdist.

All of them are in handwriting style fonts. fivetrees1 is in a Kyoukasho font (schoolbook style),
fivetrees?2 is in a Kaisho font (regular script calligraphy font) fivetrees3 is in a Gyousho font
(semi-cursive calligraphy font)

An object of class 1ist of length 5.
An object of class 1ist of length 5.
An object of class 1ist of length 5.

Source

The list has been generated with the function kanjimat using the Mac OS pre-installed YuKyokasho
font (fivetrees1), as well as the freely available fonts nagayama_kai by Norio Nagayama and Kouzan-
BrushFontGyousyo by Aoyagi Kouzan.

Examples

oldpar <- par(mfrow = c(3,5))
invisible(lapply(fivetreesl, plot))
invisible(lapply(fivetrees2, plot))
invisible(lapply(fivetrees3, plot))
par(oldpar)

get_strokes Get the strokes of a kanjivec object

Description
The strokes are the leaves of the kanjivec stroketree. They consist of a two-column matrix giving
a discretized path for the stroke in the unit square [0, 1]? with further attributes.

Usage

get_strokes(kvec, which = 1:kvec$nstrokes, simplify = TRUE)

Arguments
kvec an object of class kanjivec
which a numeric vector specifying the numbers of the strokes that are to be returned.

Defaults to all strokes.

simplify logical. Shall only the stroke be returned if which has length 1?

6 get_strokes_compo

Value

Usually a list of strokes with attributes. Regardless of whether which is ordered or contains du-
plicates, the returned list will always contain the strokes in their natural order without duplicates.
If which has length 1 and simplified = TRUE, the list is avoided, and only the single stroke is
returned.

See Also

get_strokes_compo

Examples

kanji <- fivebetas[[5]]
get_strokes(kanji, c(3,10)) # the two long vertical strokes in \u9663

get_strokes_compo Get the strokes of a specific component of a kanjivec object

Description

The strokes are the leaves of the kanjivec stroketree. They consist of a two-column matrix giving
a discretized path for the stroke in the unit square [0, 1]? with further attributes.

Usage

get_strokes_compo(kvec, which = c(1, 1))

Arguments
kvec an object of class kanjivec
which a vector of length 2 specifing the index of the component, i.e. the component
used is pluck (kvec$components, !!!which). The default c(1, 1) refers to the
root component (full kanji), so all strokes are returned.
Value

A list of strokes with attributes.

See Also

get_strokes

kanjidata 7

Examples

kanji <- fivebetas[[5]]

get the three strokes of the component\u2edé in \u9663

rad <- get_strokes_compo(kanji, c(2,1))

plot(0.5, 0.5, x1im=c(0,1), ylim=c(0,1), type="n", asp=1, xaxs="i", yaxs="i", xlab="", ylab="")
invisible(lapply(rad, lines, lwd=4))

kanjidata Data on kanji

Description

The tibbles kbase and kmorph provide basic and morphologic information, respectively, for all kanji
contained in the KANJIDIC?2 file (see below)

Usage

kbase

kmorph

Format

kbase is a tibble with 13,108 rows and 13 variables:

kanji the kanji
unicode the Unicode codepoint
strokes the number of strokes

class one of four classes: "kyouiku", "jouyou", "jinmeiyou" or "hyougai"

grade a number from 1-11, basically a finer version of class, same as in KANJIDIC2, except that
we assgined an 11 for all hyougaiji (rather than an NA value)

kanken at what level the kanji appears in the Nihon Kanji Nouryoku Kentei (Kanken)

jlpt at what level the kanji appears in the Japanese Language Proficiency Test (Nihongou Nouryoku
Shiken)

wanikani at what level the kanji is learned on the kanji learning website Wanikani

frank the frequency rank (1 = most frequent) "based on several averages (Wikipedia, novels, news-
papers, ...)"

frank_news the frequency rank (1 = most frequent) based on news paper data (2501 most frequent
kanji over four years in the Mainichi Shimbun)

read_on, read_kun a single ON reading in katakana
read_kun a single kun reading in hiragana

mean a single English meaning of the kanji

8 kanjidist

kmorph is a tibble with 13,108 rows and 15 variables:

kanji the kanji

strokes the number of strokes

radical the traditional (Kangxi) radical used for indexing kanji (one of 214)
radvar the variant of the radical if it is different, otherwise NA

nelson_c the Nelson radical if it differs from the traditional one, otherwise NA

ide ideographic description character (plus sometimes a number or a letter) describing the shape of
the kanji

components visible components of the kanji; originally from KRADFILE
skip the kanji’s SKIP code

mean a single English meaning of the kanji (same as in kbase)

An object of class tbl_df (inherits from tbl, data. frame) with 13108 rows and 13 columns.
An object of class tbl_df (inherits from tbl, data. frame) with 13108 rows and 9 columns.

Details

The single ON and kun readings and the single meaning are for easy identification of the more
difficult kanji. They are the first entry in the KANJIDIC?2 file which may not always be the most
important one. For full readings/meanings use the function lookup or consult a dictionary.

Source

Most of the data is directly from the KANJIDIC2 file. https://www.edrdg.org/wiki/index.
php/KANJIDIC_Project

Variables jlpt, frank, idc, components were taken from the Kanjium data base https://github.
com/mifunetoshiro/kanjium

Variable components is originally from RADKFILE/KRADFILE. https://www.edrdg.org/)

The use of this data is covered in each case by a Creative Commons BY-SA 4.0 License. See the
package’s LICENSE file for details and copyright holders.

Variable "class" is derived from "grade".
Variable "kanken" was compiled based on the Wikipedia description of the test levels (as of Septem-
ber 2022).

kanjidist Compute distance between two kanjivec objects based on hierarchical
optimal transport

Description

The kanji distance is based on matching hierarchical component structures in a nesting-free way
across all levels. The cost for matching individual components is a cost for registering the compo-
nents (i.e. alligning there position, scale and aspect ratio) plus the (relative unbalanced) Wasserstein
distance between the registered components.

https://www.edrdg.org/wiki/index.php/KANJIDIC_Project
https://www.edrdg.org/wiki/index.php/KANJIDIC_Project
https://github.com/mifunetoshiro/kanjium
https://github.com/mifunetoshiro/kanjium
https://www.edrdg.org/

kanjidist

Usage

kanjidist(
k1,
k2,

compo_seg_depthl = 3,

compo_seg_depth?2

p=1,

C=20.2,
type
size = 48,
lwd = 2.5,
verbose =

Arguments

k1, k2

1
w

c("rtt"”, "unbalanced”, "balanced"),

FALSE

two objects of type kanjivec.

compo_seg_depthl1, compo_seg_depth2

type

size
Iwd

verbose

Details

two integers > 1. Specifies for each kanji the deepest level included for compo-
nent matching. If 1, only the kanji itself is used.

the order of the Wasserstein distance used for matching components. All dis-
tances and the penalty (if any) are taken to the p-th power (which is compensated
by taking the p-th root after summation).

the penalty for extra mass if type is "rtt"” or "unbalanced”, i.e. we add C*p
per unit of extra mass (before applying the p-th root).

the type of Wasserstein distance used for matching components based on bitmaps
drawn from the stroke information in k1 and k2. "unbalanced” means the pixel
values in the two images are interpreted as mass. The total masses can be very
different. Extra mass can be disposed of at cost C*p per unit. "rtt" is com-
putationally the same, but the final distance is divided by the maximum of the
total ink in each kanji to the (1/p). "balanced” means the pixel values are nor-
malized so that both images have the same total mass 1. Everything has to be
transported, i.e.\ disposal of mass is not allowed.

side length of the bitmaps used for matching components.
linewidth for drawing the components in these bitmaps.

logical. Whether to print detailed information on the cost for all pairs of com-
ponents and the final matching.

For the precise definition and details see the reference below. Parameter C corresponds to b/2'/? in

the paper.

Value

The kanji distance, a non-negative number.

10 kanjidistmat

Warning

[Experimental]

The interface and details of this function will change in the future. Currently only a minimal set
of parameters can be passed. The other parameters are fixed exactly as in the "prototype distance"
(4.1) of the reference below for better or worse.

There is a certain tendency that exact matches of components are rather strongly favored (if the
KanjiVG elements agree this can overrule the unbalanced Wasserstein distance) and the penalties
for translation/scaling/distortion of components are somewhat mild.

The computation time is rather high (depending on the settings and kanji up to several seconds per
kanji pair). This can be alleviated somewhat by keeping the compo_seg_depth parameters at 3 or
lower and setting size = 32 (which goes well with 1lwd=1.8).

Future versions will use a much faster line base optimal transport algorithm and further speed-ups.

References

Dominic Schuhmacher (2023).
Distance maps between Japanese kanji characters based on hierarchical optimal transport.
ArXiv Preprint, doi:10.48550/arXiv.2304.02493

See Also

kanjidistmat, kmatdist

Examples

if (requireNamespace("ROI.plugin.glpk”)) {
kanjidist(fivebetas[[4]], fivebetas[[5]1])
kanjidist(fivebetas[[4]], fivebetas[[5]], verbose=TRUE)
faster and similar:
kanjidist(fivebetas[[4]], fivebetas[[5]], compo_seg_depth1=2, compo_seg_depth2=2,
size=32, 1lwd=1.8, verbose=TRUE)
slower and similar:
kanjidist(fivebetas[[4]], fivebetas[[5]], size=64, 1lwd=3.2, verbose=TRUE)

3
kanjidistmat Compute distance matrix based on hierarchical optimal transport for
lists of kanjivec objects
Description

Individual distances are based on kanjidist.

https://doi.org/10.48550/arXiv.2304.02493

kanjidistmat 11

Usage

kanjidistmat(
klist,
klist2 = NULL,
compo_seg_depth = 3,
p=1,
c=290.2,
type = c("rtt”, "unbalanced”, "balanced"),
size = 48,
lwd = 2.5,
verbose = FALSE

Arguments

klist a list of kanjimat objects.

klist2 an optional second list of kanjimat objects.

compo_seg_depth
integer > 1. Specifies for all kanji the deepest level included for component
matching. If 1, only the kanji itself is used.

p, C, type, size, lwd, verbose
the same as for the function kanjidist.

Value

A matrix of dimension length(klist) x length(klist2) having as its (i, j)-th entry the distance
between klist[[i]] and klist2[[j]]. If klist2 is not provided it is assumed to be equal to
klist, but computation is more efficient as only the upper triangular part is computed and then
symmetrized with diagonal zero.

Warning
[Experimental]
The same precautions apply as for kanjidist.

See Also

kanjidist, kmatdistmat

Examples

kanjidistmat(fivebetas)

12

kanjimat

kanjimat

Create kanjimat objects

Description

Create a (list of) kanjimat object(s), i.e. bitmap representations of a kanji using a certain font-family
and other typographical parameters.

Usage

kanjimat(
kanji,

family = NULL,

size =
margin
antiali
save =

NULL,
:Q,

as = TRUE,

FALSE,

overwrite = FALSE,
simplify = TRUE,

Arguments
kanji
family
size

margin

antialias

save

overwrite

simplify

Value

a (vector of) character string(s) containing kanjis.
the font-family to be used. For details see vignette.
the sidelength of the (square) bitmap

extra margin to around the character. Defaults to O which leaves a relatively slim
margin. Can be negative, but risks cutting off parts of the character. Units are
relative to size in steps of 1/32.

logical. Shall antialiasing be performed?
logical or character. If FALSE return the (list of) kanjimat object(s). Otherwise

save the result as an rds file in the working directory (as kmatsave.rds) or under
the file path provided.

logical. If FALSE return an error (before any computations are done) if the
designated file path already exists. Otherwise an existing file is overwritten.
logical. Shall a single kanjimat object be returned (instead a list of one) if kanji
is a single kanji?

futher arguments passed to png. This is for extensibility. The only argument that

may currently be used is type. Trying to change sizes, units, colors or fonts by
this argument results in an error or an undesirable output.

A list of objects of class kanjimat or, if only one kanji was specified and simplify is TRUE, a
single objects of class kanjimat. If save = TRUE, the same is (saved and) still returned invisibly.

kanjivec

Warning

13

If no font family is provided, the default Chinese font WenQuanYi Micro Hei that comes with the
package showtext is used. This means that the characters will typically be recognizable, but quite
often look odd as Japanese characters. We strongly advised that a Japanese font is used as detailed

above.

Examples

res <- kanjimat(kanji="\u85e4"”, size = 128)

kanjivec

Create kanjivec objects from kanjivg data

Description

Create a (list of) kanjivec object(s). Each object is a representation of the kanji as a tree of strokes
based on .svg files from the KanjiVG database containing further, derived information.

Usage

kanjivec(
kanji,

database = NULL,
flatten = "intelligent”,

save = FALSE,

overwrite = FALSE,
simplify = TRUE

Arguments
kanji

database

flatten

save

a (vector of) character string(s) of one or several kanji.

the path to a local copy of (a subset of) the KanjiVG database. It is expected
that the svg files reside at this exact location (not in a subdirectory). If NULL,
an attempt is made to read the svg file(s) from the KanjiVG GitHub reposi-
tory (after prompting for confirmation, which can be switched off via the option
ask_github).

logical. Should nodes that are only-children be fused with their parents? Alter-
natively one of the strings "intelligent", "inner" or "leaves". Although the first is
the default it is experimental and the precise meaning will change in the future;
see details.

logical or character. If FALSE return the (list of) kanjivec object(s). Otherwise
save the result as an rds file in the working directory (as kvecsave.rds) or under
the file path provided.

14 kanjivec

overwrite logical. If FALSE return an error (before any computations are done) if the
designated file path already exists. Otherwise an existing file is overwritten.

simplify logical. Shall a single kanjivec object be returned (instead a list of one) if kanji
is a single kanji?

Details

A kanjivec object contains detailed information on the strokes of which an individual kanji is com-
posed including their order, a segmentation into reasonable components ("radicals" in a more gen-
eral sense of the word), classification of individual strokes, and both vector data and interpolated
points to recreate the actual stroke in a Kyoukashou style font. For more information on the original
data see http://kanjivg.tagaini.net/. That data is licenced under Creative Commons BY-SA
3.0 (see licence file of this package).

The original .svg files sometimes contain additional <g> elements that provide information about
the current group of strokes rather than establishing a new subgroup of its own. This happens
typically for information that establishes coherence with another part of the tree (by noting that the
current subgroup is also part 2 of something else), but also for variant information. With the option
flatten = TRUE the extra hierarchy level in the tree is avoided, while the original information in the
KanjiVG file is kept. This is achieved by fusing only-children to their parents, giving the new node
the name of the child and all its attributes, but prefixing p. to the attribute names of the parent (the
parents’ "names" attribute is discarded, but can be reconstructed from the parents’ id). Removal
of several hierarchies in sequence can lead to attribute names with multiple p. in front. Fusing to
parents is suppressed if the parent is the root of the hierarchy (typically for one-stroke kanji), as this
could lead to confusing results.

The options flatten = "inner” and flatten = "leaves” implement the above behavior only for
the corresponding type of node (inner nodes or leaves). The option flatten = "intelligent”
tries to find out in more sophisticated ways which flattening is desirable and which is not (it will
flatten rather conservatively). Currently nodes without an element attribute that have only one child
are flattened away (one example where this is reasonable is in kanji kbase[187,]), as are nodes
with an element attribute and only one child if this child is also an inner node and has the same
element and part attribute as the parent, but both have no number (this would be problematic for
any component-building code in the particular case of kanji kbase[1111, 1]).

A kanjivec object has components

char the kanji (a single character)
hex its Unicode codepoint (integer of class hexmode)
padhex the Unicode codepoint padded with zeros to five digits (mode character)

family the font on which the data is based. Currently only "schoolbook" (to be extended with
"kaisho" at some point)

nstrokes the number of strokes in the kanji

ncompos a vector of the number of components at each depth of the tree

nveins the number of veins in the component structure

strokedend the decomposition tree of the kanji as an object of class dendrogram

components the component structure by segmentation depth (components can overlap) in terms of
KanjiVG elements and their depth-first tree coordinates

http://kanjivg.tagaini.net/

kanjivec 15

veins the veins in the component structure. Each vein is represented as a two-column matrix
that lists in its rows the indices of components (starting at the root, which in the component
indexing is c(1,1))

stroketree the decomposition tree of the kanji, a list containing the full information of the the
KanjiVG file (except some top level attributes)

stroketree is a close representation of the KanjiVG svg file as list object with some serious nesting
of sublists. The XML attributes become attributes of the list and its elements. The user will usually
not have to look at or manipulate stroketree directly, but strokedend and compents are derived
from it and other functions may process it further.

The main differences to the svg file are

1. the actual strokes are not only given as d-attributes describing Bézier curves but also as two-
column matrices describing discretizations of these curves. These matrices are the actual
contents of the innermost lists in stroketree, but are more conveniently accessed via the
function get_strokes.

2. The positions of the stroke numbers (for plotting) are saved as an attribute strokenum_coords
to the entire stroke tree rather than a separate element.

strokedend is more easy to examine and work with due to various convenience functions for den-
drograms in the packages stats and dendextend, including str and plot.dendrogram. The func-
tion plot.kanjivec with option type = "dend” is a wrapper for plot.dendrogram with reason-
able presets for various options.

The label-attributes of the nodes of strokedend are taken from the element (for inner nodes) and
type (for leaves) attributes of the .svg files. They consist of UTF-8 characters representing kanji
parts and a combination of UTF-8 characters for representing strokes and may not represent well in
all CJK fonts (see details of plot.kanjivec). If element and type are missing in the .svg file, the
label assigned is the second part of the id-attribute, e.g. g5 or s9.

The components at a given level can be plotted, see plot.kanjivec with type = "kanji"”. Both
components and veins serve mainly for the computation of kanji distances.

Value
A list of objects of class kanjivec or, if only one kanji was specified and simplify is TRUE, a
single objects of class kanjivec. If save = TRUE, the same is (saved and) still returned invisibly.

See Also

plot.kanjivec, str.kanjivec

Examples

if (interactive()) {
Try to load the svg file for the kanji from GitHub.
res <- kanjivec("\u85e4", database=NULL)
str(res)

}

fivebetas # sample kanjivec data

16 kmatdist
str(fivebetas[[1]])
kmatdist Compute the unbalanced or balanced Wasserstein distance between
two kanjimat objects
Description
This gives the dissimilarity of pixel-images of the kanji based on how far mass (or "ink") has to be
transported to transform one image into the other.
Usage
kmatdist(
k1,
k2,
p=1,
C=20.2,
type = c("unbalanced”, "balanced"),
output = c("dist”, "all")
)
Arguments

k1, k2 two objects of type kanjimat.

p the order of the Wasserstein distance. All distances and a potential penalty are
taken to the p-th power (which is compensated by taking the p-th root after
summation).

C the penalty for extra mass if type="unbalanced”, i.e. we add C*p per unit of
extra mass (before applying the p-th root).

type the type of Wasserstein metric. "unbalanced” means the pixel values in the two
images are interpreted as mass. The total masses can be very different. Extra
mass can be disposed of at cost C*p per unit. "balanced” means the pixel values
are normalized so that both images have the same total mass 1. Everything has
to be transported, i.e. disposal of mass is not allowed.

output the requested output. See return value below.

Value

If output = "dist"”, a single non-negative number: the unbalanced or balanced Wasserstein dis-

tance between the kanji. If output = "all” a list with detailed information on the transport plan

and the disposal of pixel mass. See unbalanced for details.
See Also

kmatdistmat, kanjidist

kmatdistmat 17

Examples

res <- kmatdist(fivetrees1[[1]], fivetrees1[[5]], p=1, C=0.1, output="all")
plot(res, what="plan", angle=20, lwd=1.5)

plot(res, what="trans")

plot(res, what="extra")

plot(res, what="inplace")

kmatdistmat Compute distance matrix for lists of kanjimat objects

Description

Apply kmatdist to every pair of kanjimat objects to compute the unbalanced or balanced Wasser-
stein distance.

Usage

kmatdistmat(
klist,
klist2 = NULL,
p=1,
C=20.2,
type = c("unbalanced”, "balanced")

Arguments

klist a list of kanjimat objects.
klist2 an optional second list of kanjimat objects.

p, C, type the same as for the function kmatdist.

Value

A matrix of dimension length(klist) x length(klist2) having as its (i, j)-th entry the distance
between klist[[i]] and klist2[[j]]. If klist2 is not provided it is assumed to be equal to
klist, but the computation is more efficient as only the upper triangular part is computed and then
symmetrized with diagonal zero.

See Also

kmatdist, kanjidistmat

18 lookup

Examples

kmatdistmat(fivetrees1)
kmatdistmat(fivetreesl, fivetreesl) # same result but slower
kmatdistmat(fivetreesl, fivetrees2) # note the smaller values on the diagonal

kreadmean Kanji readings and meanings

Description

Data set of all kanji readings and meanings from the KANJIDIC?2 dataset in an R list format. For
convenient access to this data use function 1ookup.

Usage

kreadmean

Format

An object of class 1ist of length 13108.

Source

KANIJIDIC2 file by Jim Breen and The Electronic Dictionary Research and Development Group
(EDRDG)

https://www.edrdg.org/wiki/index.php/KANJIDIC_Project

The use of this data is covered by the Creative Commons BY-SA 4.0 License.

lookup Look up kanji

Description

Return readings and meanings or information from kbase or kmorph.

Usage

lookup(kanji, what = c("readmean”, "basic”, "morphologic"”))
Arguments

kanji a (vector of) character strings containing kanji.

what the sort of information to display.

https://www.edrdg.org/wiki/index.php/KANJIDIC_Project

options 19

Details

This is a very basic interface for a quick lookup information based on exact knowledge of the kanji
(provided by a Japanese input method or its UTF-8 code). Most of the information is based on the
KANIJIDIC2 file by EDRDG (see thank you page) Please use one of the many excellent online kanji
dictionaries (see e.g.) more sophisticated lookup methods and more detailed results.

Value
If what is "readmean" the information is output with cat and there is no return value (invisible
NULL) In the other cases the appropriate subsets of the tables kbase and kmorph are returned
Author(s)

Dominic Schuhmacher <schuhmacher@math.uni-goettingen.de>

Examples

lookup(c("\u6674", "\u66c7", "\u96e8"))
lookup("\u6674\u66c7\u96e8"”) # same

options Kanjistat Options

Description

Set or examine global kanjistat options.

Usage

kanjistat_options(...)

get_kanjistat_option(x)

Arguments
any number of options specified as name = value
X name of an option given as character string.
Value

kanjistat_options returns the list of all set options if there is no function argument. Otherwise it
returns list of all old options. get_kanjistat_option returns the current value set for option x or
NULL if the option is not set.

20 plot.kanjivec

plot.kanjimat Plot kanjimat object

Description

Plot kanjimat object

Usage

S3 method for class 'kanjimat'
plot(
X,
mode = c("dark"”, "light"),
col = gray(seq(@, 1, length.out = 256)),

Arguments
X object of class kanjimat.
mode character string. If "dark" the original grayscale values are used, if "light" they
are inverted. With the default grayscale color scheme the kanji is plotted white-
on-black for "dark" and black-on-white for "light".
col a vector of colors. Typically 256 values are enough to keep the full information
of an (antialiased) kanjimat object.
further parameters passed to image.
Value

No return value, called for side effects.

plot.kanjivec Plot kanjivec objects

Description

Plot kanjivec objects

plot.kanjivec

Usage

21

S3 method for class 'kanjivec'

plot(
X7

type = c("kanji”, "dend"),
seg_depth = 0,
palette = "Dark 3",

pal.extra

numbers

0,
FALSE,

offset = c(0.025, 0),
family = NULL,

lwd = 8,

Arguments

X

type

seg_depth

palette

pal.extra

numbers

offset

family
lwd

Details

an object of class kanjivec

either "kanji" or "dend". Whether to plot the actual kanji, coloring strokes ac-
cording to levels of segmentation, or to plot a representation of the tree structure
underlying this segmentation. Among the following named parameters, only
family is for use with type = "dend"; all others are for type = "dend".

an integer. How many steps down the segmentation hierarchy we use different
colors for different groups. If zero (the default), only one color is used that can
be specified with col passed via . .. as usual

a valid name of a hcl palette (one of hcl.pals()). Used for coloring the com-
ponents if seg_depth is > 0.

an integer. How many extra colors are picked in the specified palette. If this is 0
(the default), palette is used with as many colors as we have components. Since
many hcl palettes run from dark to light colors, the last (few) components may
be too light. Increasing pal.extra then makes the component colors somewhat
more similar, but the last component darker.

logical. Shall the stroke numbers be displayed.

the (x,y)-offset for the numbers relative to the positions from kanjivg saved in
the kanjivec object. Either a vector of length 2 specifying some fixed offset for
all numbers or a matrix of dimension kanjivec$nstrokes times 2.

the font-family for labeling the nodes if type = dend. See details.
the usual line width graphics parameter.

further parameters passed to lines if type = "kanji” and to plot.dendrogram
if type = "dend".

Setting up nice labels for the nodes if type = "dend” is not easy. For many font families it appears
that some "kanji components" cannot be displayed in plots even with the help of package showtext

22 plotkanji

and if the font contains glyphs for the corresponding codepoints that display correctly in text doc-
uments. This concerns in increasing severity of the problem Unicode blocks 2F00-2FDF (Kangxi
Radicals), 2E80-2EFF (CJK Radicals Supplement) and 31CO0-31EF (CJK Strokes). For the strokes
it seems nearly impossible which is why leaves are simply annotated with the number of the strokes.

For the other it is up to the user to find a suitable font and pass it via the argument font fam-
ily. The default family = NULL first tries to use default_font if this option has been set (via
kanjistat_options) and otherwise uses wqy-microhei, the Chinese default font that comes with
package showtext and cannot display any radicals from the supplement.

On a Mac the experience is that "hiragino_sans" works well. In addition there is the issue of font
size which is currently not judiciously set and may be too large for some (especially on-screen)
devices. The parameter cex (via .. .) fixes this.

Value

No return value, called for side effects.

Examples

kanji <- fivebetas[[2]]
plot(kanji, type = "kanji"”, seg_depth = 2)
plot(kanji, type = "dend")
gives a warning if get_kanjistat_option("default_font"”) is NULL

plotkanji Plot kanji

Description

Write kanji to a graphics device.

Usage
plotkanji(
kanji,
device = "default”,
family = NULL,
factor = 10,
width = NULL,

height = NULL,

plotkanji 23

Arguments

kanji a vector of class character specifying one or several kanji to be plotted.

device the type of graphics device where the kanji is plotted. Defaults to the user’s
default type according to getOption("device").

family the font family or families used for writing the kanji. Make sure to add the
font(s) first by using font_add; see details. If family is a vector of several font
families they are matched to the characters in kanji (and possibly recycled).

factor a maginification factor applied to the font size (typically 12 points).

width, height the dimensions of the device.

further parameters passed to the function opening the device (such as a file name
for devices that create a file).

Details

This function writes one or several kanji to a graphics device in an arbitrary font that has been regis-
tered, i.e., added to the database in package sysfonts. For the latter say font_add or font_families
to verify what fonts are available.

For further information see Working with Japanese fonts in vignette("kanjistat”, package =
"kanjistat”). plotkanji uses the package showtext to write the kanji in a large font at the
center of a new device of the specified type. specify device = "current” to write the kanji to
the current device. It is now recommended to simply use graphics::text in combination with
showtext: : showtext_auto instead.

Value

No return value, called for side effects.

Warning

If no font family is provided, the default Chinese font WenQuanYi Micro Hei that comes with the
package showtext is used. This means that the characters will typically be recognizable, but quite
often look odd as Japanese characters. We strongly advised that a Japanese font is used as detailed
above.

Examples

plotkanji("\u6edd")
plotkanji("\u72ac\u732b\u9b5a")

24

samplekan

print.kanjivec Print basic information about a kanjivec object

Description

Print basic information about a kanjivec object

Usage
S3 method for class 'kanjivec'
print(x, dend = FALSE, ...)
Arguments
X an object of class kanjivec.
dend whether to print the structure of the strokedend component.

further parameters passed to print.default.

Value

No return value, called for side effects.

samplekan Sample kanji from a set

Description

Sample kanji from a set

Usage
samplekan(
set = c("kyouiku”, "jouyou”", "jinmeiyou"”, "kanjidic"),
size =1,
replace = FALSE,
prob = NULL
)
Arguments
set a character string specifying the set of kanjis to sample from.
size a positive number, the number of samples.
replace logical. Sample with replacement?

prob currently without effect.

str.kanjivec 25

Value

a vector of length size containing the individual characters

Examples

(sam <- samplekan(size = 10))
lookup(sam)

str.kanjivec Compactly display the structure of a kanjivec object

Description

Compactly display the structure of a kanjivec object

Usage
S3 method for class 'kanjivec'
str(object, ...)

Arguments
object an object of class kanjivec.

further parameters passed to str for all but the stroketree component of
object.

Value

No return value, called for side effects.

Index

+ datasets
fivebetas, 4
fivetrees, 4
kanjidata, 7
kreadmean, 18

cjk_escape, 2
codepoint, 3
codepointToKanji (codepoint), 3

dendextend, 15

fivebetas, 4

fivetrees, 4

fivetreesl (fivetrees), 4
fivetrees2 (fivetrees), 4
fivetrees3 (fivetrees), 4
font_add, 23
font_families, 23

get_kanjistat_option (options), 19

get_strokes, 5,0, 15
get_strokes_compo, 6, 6

image, 20

kanji distances, 15
kanjidata, 7
kanjidist, 8, 10, 11, 16
kanjidistmat, 70, 10, 17
kanjimat, 5, 11,12, 17
kanjistat_options, 22
kanjistat_options (options), 19
kanjiToCodepoint (codepoint), 3
kanjivec, 4, 13, 21

kbase (kanjidata), 7
kmatdist, 5, 10, 16, 17
kmatdistmat, /1, 16, 17

kmorph (kanjidata), 7
kreadmean, 18

lookup, 8, 18, 18

option, 13
options, 19

plot.dendrogram, 15
plot.kanjimat, 20
plot.kanjivec, 15,20
plotkanji, 22

png, 12
print.kanjivec, 24

samplekan, 24
str, 15
str.kanjivec, 15, 25

unbalanced, /16

	cjk_escape
	codepoint
	fivebetas
	fivetrees
	get_strokes
	get_strokes_compo
	kanjidata
	kanjidist
	kanjidistmat
	kanjimat
	kanjivec
	kmatdist
	kmatdistmat
	kreadmean
	lookup
	options
	plot.kanjimat
	plot.kanjivec
	plotkanji
	print.kanjivec
	samplekan
	str.kanjivec
	Index

