Package ‘crew.aws.batch’

February 8, 2024
Title A Crew Launcher Plugin for AWS Batch

Description In computationally demanding analysis projects,
statisticians and data scientists asynchronously
deploy long-running tasks to distributed systems,
ranging from traditional clusters to cloud services.
The 'crew.aws.batch' package extends the 'mirai'-powered
'crew' package with a worker launcher plugin for AWS Batch.
Inspiration also comes from packages 'mirai' by Gao (2023)
<https://github.com/shikokuchuo/mirai>,
'future' by Bengtsson (2021) <doi:10.32614/RJ-2021-048>,
'rrq' by FitzJohn and Ashton (2023) <https://github.com/mrc-ide/rrg>,
'clustermq' by Schubert (2019) <doi: 10.1093/bioinformatics/btz284>),
and 'batchtools' by Lang, Bischl, and Surmann (2017).
<doi:10.21105/j0ss.00135>.

Version 0.0.5

License MIT + file LICENSE

URL https://wlandau.github.io/crew.aws.batch/,
https://github.com/wlandau/crew.aws.batch

BugReports https://github.com/wlandau/crew.aws.batch/issues
Depends R (>=4.0.0)

Imports cli (>=3.1.0), crew (>= 0.8.0), paws.common (>= 0.7.0),
paws.compute, paws.management, R6, rlang, tibble, utils

Suggests knitr (>= 1.30), markdown (>= 1.1), rmarkdown (>= 2.4),
testthat (>= 3.0.0)

Encoding UTF-8
Language en-US
Config/testthat/edition 3
RoxygenNote 7.2.3
NeedsCompilation no

Author William Michael Landau [aut, cre]
(<https://orcid.org/0000-0003-1878-3253>),
Eli Lilly and Company [cph]

https://github.com/shikokuchuo/mirai
https://doi.org/10.32614/RJ-2021-048
https://github.com/mrc-ide/rrq
https://doi.org/10.1093/bioinformatics/btz284
https://doi.org/10.21105/joss.00135
https://wlandau.github.io/crew.aws.batch/
https://github.com/wlandau/crew.aws.batch
https://github.com/wlandau/crew.aws.batch/issues
https://orcid.org/0000-0003-1878-3253

2 crew_class_definition_aws_batch

Maintainer William Michael Landau <will.landau.oss@gmail.com>
Repository CRAN
Date/Publication 2024-02-08 04:20:08 UTC

R topics documented:

crew.aws.batch-packageo 2
crew_class_definition_aws_batch 2
crew_class_launcher_aws_batch 7
crew_class_monitor_aws_batch 11
crew_controller_aws_batch e 15
crew_definition_aws_batch 20
crew_launcher aws batcho 21
crew_monitor_aws_batch 25
Index 27

crew.aws.batch-package
crew.aws.batch: a crew launcher plugin for AWS Batch

Description

In computationally demanding analysis projects, statisticians and data scientists asynchronously
deploy long-running tasks to distributed systems, ranging from traditional clusters to cloud services.
The crew.aws.batch package extends the mirai-powered crew package with worker launcher
plugins for AWS Batch. Inspiration also comes from packages mirai, future, rrq, clustermq,
and batchtools.

crew_class_definition_aws_batch
AWS Batch definition class

Description

AWS Batch definition R6 class

Details

See crew_definition_aws_batch().

https://github.com/shikokuchuo/mirai
https://wlandau.github.io
https://github.com/shikokuchuo/mirai
https://future.futureverse.org/
https://mrc-ide.github.io/rrq/
https://mschubert.github.io/clustermq/
https://mllg.github.io/batchtools/

crew_class_definition_aws_batch 3

IAM policies

In order for the AWS Batch crew job definition class to function properly, your IAM policy needs

permission to perform the RegisterJobDefinition, DeregisterJobDefinition, and DescribeJobDefinitions
AWS Batch API calls. For more information on AWS policies and permissions, please visit https:
//docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html.

Active bindings

job_queue See crew_definition_aws_batch().
job_definition See crew_definition_aws_batch().
log_group See crew_definition_aws_batch().
config See crew_definition_aws_batch().
credentials See crew_definition_aws_batch().
endpoint See crew_definition_aws_batch().

region See crew_definition_aws_batch().

Methods
Public methods:

e crew_class_definition_aws_batch$new()

e crew_class_definition_aws_batch$validate()

e crew_class_definition_aws_batch$register()

e crew_class_definition_aws_batch$deregister()
e crew_class_definition_aws_batch$describe()

e crew_class_definition_aws_batch$submit()

Method new(): AWS Batch job definition constructor.

Usage:
crew_class_definition_aws_batch$new(

job_queue = NULL,

job_definition = NULL,

log_group = NULL,

config = NULL,

credentials = NULL,

endpoint = NULL,

region = NULL
)
Arguments:
job_queue See crew_definition_aws_batch().
job_definition See crew_definition_aws_batch().
log_group See crew_definition_aws_batch().
config See crew_definition_aws_batch().
credentials See crew_definition_aws_batch().
endpoint See crew_definition_aws_batch().

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

crew_class_definition_aws_batch

region See crew_definition_aws_batch().

Returns: AWS Batch job definition object.

Method validate(): Validate the object.
Usage:
crew_class_definition_aws_batch$validate()

Returns: NULL (invisibly). Throws an error if a field is invalid.

Method register(): Register a job definition.
Usage:
crew_class_definition_aws_batch$register(

image,
platform_capabilities = "EC2",
memory_units = "gigabytes”,
memory = NULL,

cpus = NULL,

gpus = NULL,
seconds_timeout = NULL,
scheduling_priority = NULL,
tags = NULL,

propagate_tags = NULL,
parameters = NULL,
job_role_arn = NULL,
execution_role_arn = NULL

)

Arguments:

image Character of length 1, Docker image used for each job. You can supply a path to an
image in Docker Hub or the full URI of an image in an Amazon ECR repository.

platform_capabilities Optional character of length 1, either "EC2" to run on EC2 or "FARGATE"

to run on Fargate.

memory_units Character of length 1, either "gigabytes"” or "mebibytes” to set the units of
the memory argument. "gigabytes” is simpler for EC2 jobs, but Fargate has strict require-
ments about specifying exact amounts of mebibytes (MiB). for details, read https://docs.
aws.amazon.com/cli/latest/reference/batch/register-job-definition.html # no-
lint

memory Positive numeric of length 1, amount of memory to request for each job.

cpus Positive numeric of length 1, number of virtual CPUs to request for each job.

gpus Positive numeric of length 1, number of GPUs to request for each job.

seconds_timeout Optional positive numeric of length 1, number of seconds until a job times
out.

scheduling_priority Optional nonnegative integer of length 1 between @ and 9999, priority
of jobs. Jobs with higher-valued priorities are scheduled first. The priority only applies if
the job queue has a fair share policy. Set to NULL to omit.

tags Optional character vector of tags.

propagate_tags Optional logical of length 1, whether to propagate tags from the job or defi-
nition to the ECS task.

https://docs.aws.amazon.com/cli/latest/reference/batch/register-job-definition.html
https://docs.aws.amazon.com/cli/latest/reference/batch/register-job-definition.html

crew_class_definition_aws_batch 5

parameters Optional character vector of key-value pairs designating parameters for job sub-
mission.

job_role_arn Character of length 1, Amazon resource name (ARN) of the job role.

execution_role_arn Character of length 1, Amazon resource name (ARN) of the execution
role.

Details: The register () method registers a simple job definition using the job definition name
and log group originally supplied to crew_definition_aws_batch(). Job definitions created
with $register() are container-based and use the AWS log driver. For more complicated
kinds of jobs, we recommend skipping register(): first call https://www.paws-r-sdk.com/
docs/batch_register_job_definition/ to register the job definition, then supply the job
definition name to the job_definition argument of crew_definition_aws_batch().

Returns: A one-row tibble with the job definition name, ARN, and revision number of the
registered job definition.
Method deregister(): Attempt to deregister a revision of the job definition.
Usage:
crew_class_definition_aws_batch$deregister(revision = NULL)
Arguments:

revision Finite positive integer of length 1, optional revision number to deregister. If NULL,
then only the highest revision number of the job definition is deregistered, if it exists.

Details: Attempt to deregister the job definition whose name was originally supplied to the
job_definition argument of crew_definition_aws_batch().

Returns: NULL (invisibly).

Method describe(): Describe the revisions of the job definition.
Usage:
crew_class_definition_aws_batch$describe(revision = NULL, active = FALSE)
Arguments:
revision Positive integer of length 1, optional revision number to describe.

active Logical of length 1, whether to filter on just the active job definition.

Returns: A tibble with job definition information. There is one row per revision. Some fields
may be nested lists.

Method submit(): Submit an AWS Batch job with the given job definition.

Usage:
crew_class_definition_aws_batch$submit(
command = c("sleep”, "300"),

name = paste@("crew-aws-batch-job-", crew::crew_random_name()),
memory_units = "gigabytes”,

memory = NULL,

cpus = NULL,

gpus = NULL,

seconds_timeout = NULL,
share_identifier = NULL,

https://www.paws-r-sdk.com/docs/batch_register_job_definition/
https://www.paws-r-sdk.com/docs/batch_register_job_definition/

6 crew_class_definition_aws_batch

scheduling_priority_override = NULL,
tags = NULL,

propagate_tags = NULL,

parameters = NULL

)

Arguments:

command Character vector with the command to submit for the job. Usually a Linux shell
command with each term in its own character string.

name Character of length 1 with the job name.

memory_units Character of length 1, either "gigabytes” or "mebibytes” to set the units of
the memory argument. "gigabytes” is simpler for EC2 jobs, but Fargate has strict require-
ments about specifying exact amounts of mebibytes (MiB). for details, read https://docs.
aws.amazon.com/cli/latest/reference/batch/register-job-definition.html # no-
lint

memory Positive numeric of length 1, amount of memory to request for each job.

cpus Positive numeric of length 1, number of virtual CPUs to request for each job.

gpus Positive numeric of length 1, number of GPUs to request for each job.

seconds_timeout Optional positive numeric of length 1, number of seconds until a job times
out.
share_identifier Character of length 1 with the share identifier of the job. Only applies if

the job queue has a scheduling policy. Read the official AWS Batch documentation for
details.

scheduling_priority_override Optional nonnegative integer of length between @ and 9999,
priority of the job. This value overrides the priority in the job definition. Jobs with higher-
valued priorities are scheduled first. The priority applies if the job queue has a fair share
policy. Set to NULL to omit.

tags Optional character vector of tags.

propagate_tags Optional logical of length 1, whether to propagate tags from the job or defi-
nition to the ECS task.

parameters Optional character vector of key-value pairs designating parameters for job sub-
mission.

Details: This method uses the job queue and job definition that were supplied through crew_definition_aws_batch().
Any jobs submitted this way are different from the crew workers that the crew controller starts

automatically using the AWS Batch launcher plugin. You may use the submit () method in the

definition for different purposes such as testing.

Returns: A one-row tibble with the name, ID, and Amazon resource name (ARN) of the job.

See Also

Other definition: crew_definition_aws_batch()

https://docs.aws.amazon.com/cli/latest/reference/batch/register-job-definition.html
https://docs.aws.amazon.com/cli/latest/reference/batch/register-job-definition.html

crew_class_launcher aws_batch 7

crew_class_launcher_aws_batch
AWS Batch launcher class

Description

AWS Batch launcher R6 class

Details

See crew_launcher_aws_batch().

IAM policies

In order for the AWS Batch crew plugin to function properly, your IAM policy needs permission to
perform the SubmitJob and TerminateJob AWS Batch API calls. For more information on AWS
policies and permissions, please visit https://docs.aws.amazon.com/IAM/latest/UserGuide/
access_policies.html.

AWS arguments

The AWS Batch controller and launcher accept many arguments which start with "aws_batch_".
These arguments are AW S-Batch-specific parameters forwarded directly to the submit_job() method
for the Batch client in the paws . compute R package

For a full description of each argument, including its meaning and format, please visit https://

www . paws-r-sdk.com/docs/batch_submit_job/. The upstream API documentation is at https:
//docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html and the analogous

CLI documentation is at https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.
html.

The actual argument names may vary slightly, depending on which : for example, the aws_batch_job_definition
argument of the crew AWS Batch launcher/controller corresponds to the jobDefinition argu-

ment of the web API and paws.compute: :batch()$submit_job(), and both correspond to the
--job-definition argument of the CLI.

Verbosity

Control verbosity with the paws.log_level global option in R. Set to O for minimum verbosity and
3 for maximum verbosity.

Super class

crew: :crew_class_launcher -> crew_class_launcher_aws_batch

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.html
https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.html

8 crew_class_launcher aws_batch

Active bindings

aws_batch_config See crew_launcher_aws_batch().
aws_batch_credentials See crew_launcher_aws_batch().
aws_batch_endpoint See crew_launcher_aws_batch().
aws_batch_region See crew_launcher_aws_batch().
aws_batch_job_definition See crew_launcher_aws_batch().
aws_batch_job_queue See crew_launcher_aws_batch().

aws_batch_share_identifier See crew_launcher_aws_batch().

aws_batch_scheduling_priority_override See crew_launcher_aws_batch().

aws_batch_parameters See crew_launcher_aws_batch().
aws_batch_container_overrides See crew_launcher_aws_batch().
aws_batch_node_overrides See crew_launcher_aws_batch().
aws_batch_retry_strategy See crew_launcher_aws_batch().
aws_batch_propagate_tags See crew_launcher_aws_batch().
aws_batch_timeout See crew_launcher_aws_batch().
aws_batch_tags See crew_launcher_aws_batch().

aws_batch_eks_properties_override See crew_launcher_aws_batch().

Methods
Public methods:

e crew_class_launcher_aws_batch$new()

e crew_class_launcher_aws_batch$validate()

e crew_class_launcher_aws_batch$launch_worker ()

e crew_class_launcher_aws_batch$terminate_worker()

Method new(): Abstract launcher constructor.

Usage:

crew_class_launcher_aws_batch$new(
name = NULL,
seconds_interval = NULL,
seconds_timeout = NULL,
seconds_launch = NULL,
seconds_idle = NULL,
seconds_wall = NULL,
tasks_max = NULL,
tasks_timers = NULL,
reset_globals = NULL,
reset_packages = NULL,
reset_options = NULL,
garbage_collection = NULL,
launch_max = NULL,

crew_class_launcher aws_batch

tls = NULL,

processes = NULL,

aws_batch_config = NULL,
aws_batch_credentials = NULL,
aws_batch_endpoint = NULL,
aws_batch_region = NULL,
aws_batch_job_definition = NULL,
aws_batch_job_queue = NULL,
aws_batch_share_identifier = NULL,
aws_batch_scheduling_priority_override = NULL,
aws_batch_parameters = NULL,
aws_batch_container_overrides = NULL,
aws_batch_node_overrides = NULL,
aws_batch_retry_strategy = NULL,
aws_batch_propagate_tags = NULL,
aws_batch_timeout = NULL,

aws_batch_tags = NULL,
aws_batch_eks_properties_override = NULL

)

Arguments:

name See crew_launcher_aws_batch().

seconds_interval See crew_launcher_aws_batch().
seconds_timeout See crew_launcher_aws_batch().
seconds_launch See crew_launcher_aws_batch().
seconds_idle See crew_launcher_aws_batch().
seconds_wall See crew_launcher_aws_batch().

tasks_max See crew_launcher_aws_batch().

tasks_timers See crew_launcher_aws_batch().
reset_globals See crew_launcher_aws_batch().
reset_packages See crew_launcher_aws_batch().
reset_options See crew_launcher_aws_batch().
garbage_collection See crew_launcher_aws_batch().
launch_max See crew_launcher_aws_batch().

tls See crew_launcher_aws_batch().

processes See crew_launcher_aws_batch().
aws_batch_config See crew_launcher_aws_batch().
aws_batch_credentials See crew_launcher_aws_batch().
aws_batch_endpoint See crew_launcher_aws_batch().
aws_batch_region See crew_launcher_aws_batch().
aws_batch_job_definition See crew_launcher_aws_batch().
aws_batch_job_queue See crew_launcher_aws_batch().
aws_batch_share_identifier See crew_launcher_aws_batch().
aws_batch_scheduling_priority_override See crew_launcher_aws_batch().
aws_batch_parameters See crew_launcher_aws_batch().

10 crew_class_launcher aws_batch

aws_batch_container_overrides See crew_launcher_aws_batch().
aws_batch_node_overrides See crew_launcher_aws_batch().
aws_batch_retry_strategy See crew_launcher_aws_batch().
aws_batch_propagate_tags See crew_launcher_aws_batch().
aws_batch_timeout See crew_launcher_aws_batch().

aws_batch_tags See crew_launcher_aws_batch().
aws_batch_eks_properties_override See crew_launcher_aws_batch().

Returns: An abstract launcher object.

Method validate(): Validate the launcher.
Usage:
crew_class_launcher_aws_batch$validate()

Returns: NULL (invisibly). Throws an error if a field is invalid.

Method launch_worker(): Launch a local process worker which will dial into a socket.
Usage:
crew_class_launcher_aws_batch$launch_worker(
call,
name,
launcher,
worker,
instance

)

Arguments:

call Character of length 1, a namespaced call to crew_worker () which will run in the worker
and accept tasks.

name Character of length 1, an informative worker name.

launcher Character of length 1, name of the launcher.

worker Positive integer of length 1, index of the worker. This worker index remains the same

even when the current instance of the worker exits and a new instance launches. It is always
between 1 and the maximum number of concurrent workers.

instance Character of length 1 to uniquely identify the current instance of the worker.
Details: The call argument is R code that will run to initiate the worker.

Returns: A handle object to allow the termination of the worker later on.

Method terminate_worker(): Terminate a local process worker.
Usage:
crew_class_launcher_aws_batch$terminate_worker(handle)
Arguments:
handle A process handle object previously returned by launch_worker ().

Returns: NULL (invisibly).

See Also

Other plugin_aws_batch: crew_controller_aws_batch(), crew_launcher_aws_batch()

crew_class_monitor_aws_batch

11

crew_class_monitor_aws_batch

AWS Batch monitor class

Description

AWS Batch monitor R6 class

Details

See crew_monitor_aws_batch().

IAM policies

In order for the AWS Batch crew monitor class to function properly, your IAM policy needs per-
mission to perform the SubmitJob, TerminateJob, ListJobs, and DescribeJobs AWS Batch
API calls. In addition, to download CloudWatch logs with the log() method, your IAM policy
also needs permission to perform the GetLogEvents CloudWatch logs API call. For more in-

formation on AWS policies and permissions, please visit https://docs.aws.amazon.com/IAM/
latest/UserGuide/access_policies.html.

Active bindings

job_queue See crew_monitor_aws_batch().

job_definition See crew_monitor_aws_batch().

log_group See crew_monitor_aws_batch().

config See crew_monitor_aws_batch().

credentials See crew_monitor_aws_batch().

endpoint See crew_monitor_aws_batch().

region See crew_monitor_aws_batch().

Methods

Public methods:

crew_class_monitor_aws_batch$new()
crew_class_monitor_aws_batch$validate()
crew_class_monitor_aws_batch$terminate()
crew_class_monitor_aws_batch$status()
crew_class_monitor_aws_batch$log()
crew_class_monitor_aws_batch$jobs()
crew_class_monitor_aws_batch$active()
crew_class_monitor_aws_batch$inactive()
crew_class_monitor_aws_batch$submitted()
crew_class_monitor_aws_batch$pending()

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

crew_class_monitor_aws_batch

* crew_class_monitor_aws_batch$runnable()
e crew_class_monitor_aws_batch$starting()
e crew_class_monitor_aws_batch$running()

e crew_class_monitor_aws_batch$succeeded()
e crew_class_monitor_aws_batch$failed()

Method new(): AWS Batch job definition constructor.

Usage:
crew_class_monitor_aws_batch$new(

job_queue = NULL,

job_definition = NULL,

log_group = NULL,

config = NULL,

credentials = NULL,

endpoint = NULL,

region = NULL
)
Arguments:
job_queue See crew_monitor_aws_batch().
job_definition See crew_monitor_aws_batch().
log_group See crew_monitor_aws_batch().
config See crew_monitor_aws_batch().
credentials See crew_monitor_aws_batch().
endpoint See crew_monitor_aws_batch().
region See crew_monitor_aws_batch().

Returns: AWS Batch job definition object.

Method validate(): Validate the object.
Usage:
crew_class_monitor_aws_batch$validate()

Returns: NULL (invisibly). Throws an error if a field is invalid.

Method terminate(): Terminate one or more AWS Batch jobs.

Usage:

crew_class_monitor_aws_batch$terminate(
ids,
reason = "terminated by crew.aws.batch monitor”,
verbose = TRUE

)

Arguments:

ids Character vector with the IDs of the AWS Batch jobs to terminate.
reason Character of length 1, natural language explaining the reason the job was terminated.

verbose Logical of length 1, whether to show a progress bar if the R process is interactive and
length(ids) is greater than 1.

crew_class_monitor_aws_batch 13

Returns: NULL (invisibly).

Method status(): Get the status of a single job
Usage:
crew_class_monitor_aws_batch$status(id)
Arguments:

id Character of length 1, job ID. This is different from the user-supplied job name.

Returns: A one-row tibble with information about the job.

Method log(): Get the CloudWatch log of a job.

Usage:
crew_class_monitor_aws_batch$log(id, start_from_head = FALSE)

Arguments:

id Character of length 1, job ID. This is different from the user-supplied job name.

start_from_head Logical of length 1, whether to print earlier log events before later ones.

Details: This method assumes the job has log driver "awslogs"” (specifying AWS CloudWatch)

and that the log group is the one prespecified in the 1og_group argument of crew_monitor_aws_batch().
This method cannot use other log drivers such as Splunk, and it will fail if the log group is wrong

or missing.

Returns: A tibble with log information.

Method jobs(): List all the jobs in the given job queue with the given job definition.

Usage:
crew_class_monitor_aws_batch$jobs(
status = c("submitted”, "pending”, "runnable”, "starting”, "running”, "succeeded”,

"failed")
)

Arguments:
status Character vector of job states. Results are limited to these job states.

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method active(): List active jobs: submitted, pending, runnable, starting, or running (not
succeeded or failed).

Usage:
crew_class_monitor_aws_batch$active()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method inactive(): Listinactive jobs: ones whose status is succeeded or failed (not submitted,
pending, runnable, starting, or running).

14

crew_class_monitor_aws_batch

Usage:
crew_class_monitor_aws_batch$inactive()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method submitted(): Listjobs whose status is "submitted”.

Usage:
crew_class_monitor_aws_batch$submitted()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method pending(): List jobs whose status is "pending”.

Usage:
crew_class_monitor_aws_batch$pending()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method runnable(): List jobs whose status is "runnable”.

Usage:
crew_class_monitor_aws_batch$runnable()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method starting(): Listjobs whose status is "starting”.

Usage:
crew_class_monitor_aws_batch$starting()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method running(): List jobs whose status is "running”.

Usage:
crew_class_monitor_aws_batch$running()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method succeeded(): List jobs whose status is "succeeded”.

crew_controller_aws_batch 15

Usage:
crew_class_monitor_aws_batch$succeeded()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

Method failed(): List jobs whose status is "failed".

Usage:
crew_class_monitor_aws_batch$failed()

Details: The output only includes jobs under the job queue and job definition that were supplied
through crew_monitor_aws_batch().

Returns: A tibble with one row per job and columns with job information.

See Also

Other monitor: crew_monitor_aws_batch()

crew_controller_aws_batch
Create a controller with an AWS Batch launcher.

Description

Create an R6 object to submit tasks and launch workers on AWS Batch workers.

Usage
crew_controller_aws_batch(
name = NULL,
workers = 1L,
host = NULL,
port = NULL,
tls = crew::crew_tls(mode = "automatic"),

tls_enable = NULL,
tls_config = NULL,
seconds_interval = 0.5,
seconds_timeout = 60,
seconds_launch = 1800,
seconds_idle = Inf,
seconds_wall = Inf,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,

16 crew_controller_aws_batch

garbage_collection = FALSE,

launch_max = 5L,

processes = NULL,

aws_batch_config = list(),
aws_batch_credentials = list(),
aws_batch_endpoint = NULL,
aws_batch_region = NULL,
aws_batch_job_definition,
aws_batch_job_queue,
aws_batch_share_identifier = NULL,
aws_batch_scheduling_priority_override = NULL,
aws_batch_parameters = NULL,
aws_batch_container_overrides = NULL,
aws_batch_node_overrides = NULL,
aws_batch_retry_strategy = NULL,
aws_batch_propagate_tags = NULL,
aws_batch_timeout = NULL,

aws_batch_tags = NULL,
aws_batch_eks_properties_override = NULL

)
Arguments

name Name of the client object. If NULL, a name is automatically generated.

workers Integer, maximum number of parallel workers to run.

host IP address of the mirai client to send and receive tasks. If NULL, the host defaults
to the local IP address.

port TCP port to listen for the workers. If NULL, then an available ephemeral port is
automatically chosen.

tls A TLS configuration object from crew_t1s().

tls_enable Deprecated on 2023-09-15 in version 0.4.1. Use argument t1s instead.

tls_config Deprecated on 2023-09-15 in version 0.4.1. Use argument t1s instead.

seconds_interval
Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete, such as checking mirai: :status()

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai: :status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle = Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai: :daemon().

crew_controller_aws_batch 17

crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai: :daemon().

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai: :daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. Itis recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection
TRUE to run garbage collection between tasks, FALSE to skip.

launch_max Positive integer of length 1, maximum allowed consecutive launch attempts
which do not complete any tasks. Enforced on a worker-by-worker basis. The
futile launch count resets to back 0 for each worker that completes a task. It is
recommended to set launch_max above 0 because sometimes workers are un-
productive under perfectly ordinary circumstances. But launch_max should still
be small enough to detect errors in the underlying platform.

processes NULL or positive integer of length 1, number of local processes to launch to allow
worker launches to happen asynchronously. If NULL, then no local processes are
launched. If 1 or greater, then the launcher starts the processes on start()
and ends them on terminate(). Plugins that may use these processes should
run asynchronous calls using launchers$async$eval () and expect amirai task
object as the return value.

aws_batch_config
Named list, config argument of paws.compute: :batch() with optional con-
figuration details.

aws_batch_credentials
Named list. credentials argument of paws. compute: :batch() with optional
credentials (if not already provided through environment variables such as AWS_ACCESS_KEY_ID).

aws_batch_endpoint
Character of length 1. endpoint argument of paws.compute: :batch() with
the endpoint to send HTTP requests.

aws_batch_region
Character of length 1. region argument of paws.compute: :batch() with an
AWS region string such as "us-east-2".

18

crew_controller_aws_batch

aws_batch_job_definition
Character of length 1, name of the AWS Batch job definition to use. There is no
default for this argument, and a job definition must be created prior to running
the controller. Please see https://docs.aws.amazon.com/batch/ for details.

To create a job definition, you will need to create a Docker-compatible image
which can run R and crew. You may which to inherit from the images at https:
//github.com/rocker-org/rocker-versioned2.

aws_batch_job_queue
Character of length 1, name of the AWS Batch job queue to use. There is no
default for this argument, and a job queue must be created prior to running the
controller. Please see https://docs.aws.amazon.com/batch/ for details.

aws_batch_share_identifier
NULL or character of length 1. For details, visit https://www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

aws_batch_scheduling_priority_override
NULL or integer of length 1. For details, visit https://www.paws-r-sdk.com/
docs/batch_submit_job/ and the "AWS arguments" sections of this help file.

aws_batch_parameters
NULL or a nonempty list. For details, visit https://www.paws-r-sdk.com/
docs/batch_submit_job/ and the "AWS arguments" sections of this help file.

aws_batch_container_overrides
NULL or a nonempty named list of fields to override in the container speci-
fied in the job definition. Any overrides for the command field are ignored be-
cause crew.aws.batch needs to override the command to run the crew worker.
For more details, visit https://www.paws-r-sdk.com/docs/batch_submit_
job/ and the "AWS arguments" sections of this help file.

aws_batch_node_overrides
NULL or a nonempty named list. For more details, visithttps://www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

aws_batch_retry_strategy
NULL or a nonempty named list. For more details, visithttps://www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

aws_batch_propagate_tags
NULL or a nonempty list. For more details, visit https://www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

aws_batch_timeout
NULL or a nonempty named list. For more details, visit https://www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

aws_batch_tags NULL or a nonempty list. For more details, visit https://www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

https://docs.aws.amazon.com/batch/
https://github.com/rocker-org/rocker-versioned2
https://github.com/rocker-org/rocker-versioned2
https://docs.aws.amazon.com/batch/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/

crew_controller_aws_batch 19

aws_batch_eks_properties_override
NULL or a nonempty named list. For more details, visithttps: //www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

IAM policies

In order for the AWS Batch crew plugin to function properly, your IAM policy needs permission to
perform the SubmitJob and TerminateJob AWS Batch API calls. For more information on AWS
policies and permissions, please visit https://docs.aws.amazon.com/IAM/latest/UserGuide/
access_policies.html.

AWS arguments

The AWS Batch controller and launcher accept many arguments which start with "aws_batch_".
These arguments are AWS-Batch-specific parameters forwarded directly to the submit_job () method
for the Batch client in the paws. compute R package

For a full description of each argument, including its meaning and format, please visit https://

www . paws-r-sdk.com/docs/batch_submit_job/. The upstream API documentation is at https:
//docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html and the analogous

CLI documentation is at https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.
html.

The actual argument names may vary slightly, depending on which : for example, the aws_batch_job_definition
argument of the crew AWS Batch launcher/controller corresponds to the jobDefinition argu-

ment of the web API and paws.compute: :batch()$submit_job(), and both correspond to the
--job-definition argument of the CLI.

Verbosity

Control verbosity with the paws.log_level global option in R. Set to 0 for minimum verbosity and
3 for maximum verbosity.

See Also

Other plugin_aws_batch: crew_class_launcher_aws_batch, crew_launcher_aws_batch()

Examples

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {

controller <- crew_controller_aws_batch(
aws_batch_job_definition = "YOUR_JOB_DEFINITION_NAME",
aws_batch_job_queue = "YOUR_JOB_QUEUE_NAME"

)

controller$start()

controller$push(name = "task"”, command = sqrt(4))

controller$wait()

controller$pop()$result

controller$terminate()

}

https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.html
https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.html

20 crew_definition_aws_batch

crew_definition_aws_batch
Create an AWS Batch job definition object.

Description

Create an R6 object to manage a job definition for AWS Batch jobs.

Usage

crew_definition_aws_batch(
job_queue,
job_definition = paste@("crew-aws-batch-job-definition-", crew::crew_random_name()),
log_group = "/aws/batch/job",
config = NULL,
credentials = NULL,
endpoint = NULL,
region = NULL

Arguments

job_queue Character of length 1, name of the AWS Batch job queue.

job_definition Character of length 1, name of the AWS Batch job definition. The job definition
might or might not exist at the time crew_definition_aws_batch() is called.
Either way is fine.

log_group Character of length 1, AWS Batch CloudWatch log group to get job logs. The
default log group is often "/aws/batch/job", but not always. It is not easy
to get the log group of an active job or job definition, so if you have a non-
default log group and you do not know its name, please consult your system
administrator.

config Optional named list, config argument of paws.compute: :batch() with op-
tional configuration details.

credentials Optional named list. credentials argument of paws. compute: :batch() with
optional credentials (if not already provided through environment variables such
as AWS_ACCESS_KEY_ID).

endpoint Optional character of length 1. endpoint argument of paws. compute: :batch()
with the endpoint to send HTTP requests.

region Character of length 1. region argument of paws.compute: :batch() with an
AWS region string such as "us-east-2". Serves as the region for both AWS
Batch and CloudWatch. Tries to default to paws . common: :get_config()$region,
then to Sys. getenv("AWS_REGION") if unsuccessful, then Sys. getenv ("AWS_REGION"),
then Sys.getenv (”AWS_DEFAULT_REGION").

crew_launcher _aws_batch 21

Value

An R6 job definition object.

IAM policies

In order for the AWS Batch crew job definition class to function properly, your IAM policy needs

permission to perform the RegisterJobDefinition, DeregisterJobDefinition, and DescribeJobDefinitions
AWS Batch API calls. For more information on AWS policies and permissions, please visit https:
//docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html.

See Also

Other definition: crew_class_definition_aws_batch

crew_launcher_aws_batch
Create an AWS Batch launcher object.

Description

Create an R6 AWS Batch launcher object.

Usage

crew_launcher_aws_batch(
name = NULL,
seconds_interval = 0.5,
seconds_timeout = 60,
seconds_launch = 1800,
seconds_idle = Inf,
seconds_wall = Inf,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
launch_max = 5L,
tls = crew::crew_tls(mode = "automatic"),
processes = NULL,
aws_batch_config = list(),
aws_batch_credentials = list(),
aws_batch_endpoint = NULL,
aws_batch_region = NULL,
aws_batch_job_definition,
aws_batch_job_queue,
aws_batch_share_identifier = NULL,

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

22 crew_launcher _aws_batch

aws_batch_scheduling_priority_override = NULL,
aws_batch_parameters = NULL,
aws_batch_container_overrides = NULL,
aws_batch_node_overrides = NULL,
aws_batch_retry_strategy = NULL,
aws_batch_propagate_tags = NULL,
aws_batch_timeout = NULL,

aws_batch_tags = NULL,
aws_batch_eks_properties_override = NULL

Arguments

name Name of the launcher.

seconds_interval
Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete, such as checking mirai::status().

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai: :status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle = Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai: :daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai: :daemon().

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai: :daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. Itis recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

crew_launcher _aws_batch 23

garbage_collection
TRUE to run garbage collection between tasks, FALSE to skip.

launch_max Positive integer of length 1, maximum allowed consecutive launch attempts
which do not complete any tasks. Enforced on a worker-by-worker basis. The
futile launch count resets to back 0 for each worker that completes a task. It is
recommended to set launch_max above 0 because sometimes workers are un-
productive under perfectly ordinary circumstances. But launch_max should still
be small enough to detect errors in the underlying platform.

tls A TLS configuration object from crew_t1s().

processes NULL or positive integer of length 1, number of local processes to launch to allow
worker launches to happen asynchronously. If NULL, then no local processes are
launched. If 1 or greater, then the launcher starts the processes on start()
and ends them on terminate(). Plugins that may use these processes should
run asynchronous calls using launcher$async$eval () and expect amirai task
object as the return value.

aws_batch_config
Named list, config argument of paws.compute: :batch() with optional con-
figuration details.

aws_batch_credentials
Named list. credentials argument of paws. compute: :batch() with optional
credentials (if not already provided through environment variables such as AWS_ACCESS_KEY_ID).

aws_batch_endpoint
Character of length 1. endpoint argument of paws.compute: :batch() with
the endpoint to send HTTP requests.

aws_batch_region
Character of length 1. region argument of paws.compute: :batch() with an
AWS region string such as "us-east-2".

aws_batch_job_definition
Character of length 1, name of the AWS Batch job definition to use. There is no
default for this argument, and a job definition must be created prior to running
the controller. Please see https://docs.aws.amazon.com/batch/ for details.
To create a job definition, you will need to create a Docker-compatible image
which can run R and crew. You may which to inherit from the images at https:
//github.com/rocker-org/rocker-versioned?.

aws_batch_job_queue
Character of length 1, name of the AWS Batch job queue to use. There is no
default for this argument, and a job queue must be created prior to running the
controller. Please see https://docs.aws.amazon.com/batch/ for details.

aws_batch_share_identifier
NULL or character of length 1. For details, visit https://www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

aws_batch_scheduling_priority_override
NULL or integer of length 1. For details, visit https://www.paws-r-sdk.com/
docs/batch_submit_job/ and the "AWS arguments" sections of this help file.

https://docs.aws.amazon.com/batch/
https://github.com/rocker-org/rocker-versioned2
https://github.com/rocker-org/rocker-versioned2
https://docs.aws.amazon.com/batch/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/

24 crew_launcher _aws_batch

aws_batch_parameters
NULL or a nonempty list. For details, visit https://www.paws-r-sdk.com/
docs/batch_submit_job/ and the "AWS arguments" sections of this help file.

aws_batch_container_overrides
NULL or a nonempty named list of fields to override in the container speci-
fied in the job definition. Any overrides for the command field are ignored be-
cause crew.aws.batch needs to override the command to run the crew worker.
For more details, visit https://www.paws-r-sdk.com/docs/batch_submit_
job/ and the "AWS arguments" sections of this help file.

aws_batch_node_overrides
NULL or a nonempty named list. For more details, visithttps: //www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

aws_batch_retry_strategy
NULL or a nonempty named list. For more details, visithttps://www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

aws_batch_propagate_tags
NULL or a nonempty list. For more details, visit https://www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

aws_batch_timeout
NULL or a nonempty named list. For more details, visithttps: //www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

aws_batch_tags NULL or a nonempty list. For more details, visit https://www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

aws_batch_eks_properties_override
NULL or a nonempty named list. For more details, visithttps: //www.paws-r-sdk.
com/docs/batch_submit_job/ and the "AWS arguments" sections of this help
file.

Value

An R6 AWS Batch launcher object.

IAM policies

In order for the AWS Batch crew plugin to function properly, your IAM policy needs permission to
perform the SubmitJob and TerminateJob AWS Batch API calls. For more information on AWS
policies and permissions, please visit https://docs.aws.amazon.com/IAM/latest/UserGuide/
access_policies.html.

AWS arguments

The AWS Batch controller and launcher accept many arguments which start with "aws_batch_".
These arguments are AW S-Batch-specific parameters forwarded directly to the submit_job () method
for the Batch client in the paws. compute R package

https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

crew_monitor_aws_batch 25

For a full description of each argument, including its meaning and format, please visit https://

www. paws-r-sdk.com/docs/batch_submit_job/. The upstream API documentation is at https:
//docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html and the analogous
CLIdocumentationis athttps://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.
html.

The actual argument names may vary slightly, depending on which : for example, the aws_batch_job_definition
argument of the crew AWS Batch launcher/controller corresponds to the jobDefinition argu-
ment of the web API and paws.compute: :batch()$submit_job(), and both correspond to the
--job-definition argument of the CLI.

Verbosity
Control verbosity with the paws.log_level global option in R. Set to O for minimum verbosity and
3 for maximum verbosity.

See Also

Other plugin_aws_batch: crew_class_launcher_aws_batch, crew_controller_aws_batch()

crew_monitor_aws_batch
Create an AWS Batch monitor object.

Description

Create an R6 object to list, inspect, and terminate AWS Batch jobs.

Usage

crew_monitor_aws_batch(
job_queue,
job_definition,
log_group = "/aws/batch/job”,
config = NULL,
credentials = NULL,
endpoint = NULL,
region = NULL

Arguments

job_queue Character of length 1, name of the AWS Batch job queue.
job_definition Character of length 1, name of the AWS Batch job definition.

log_group Character of length 1, AWS Batch CloudWatch log group to get job logs. The
default log group is often "/aws/batch/job", but not always. It is not easy
to get the log group of an active job or job definition, so if you have a non-
default log group and you do not know its name, please consult your system
administrator.

https://www.paws-r-sdk.com/docs/batch_submit_job/
https://www.paws-r-sdk.com/docs/batch_submit_job/
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.html
https://docs.aws.amazon.com/cli/latest/reference/batch/submit-job.html

26 crew_monitor_aws_batch

config Optional named list, config argument of paws.compute: :batch() with op-
tional configuration details.

credentials Optional named list. credentials argument of paws. compute: :batch() with
optional credentials (if not already provided through environment variables such
as AWS_ACCESS_KEY_ID).

endpoint Optional character of length 1. endpoint argument of paws . compute: :batch()
with the endpoint to send HTTP requests.

region Character of length 1. region argument of paws.compute: :batch() with an
AWS region string such as "us-east-2". Serves as the region for both AWS
Batch and CloudWatch. Tries to default to paws. common: :get_config()$region,
then to Sys. getenv("AWS_REGION") if unsuccessful, then Sys. getenv ("AWS_REGION"),
then Sys.getenv("AWS_DEFAULT_REGION").

IAM policies

In order for the AWS Batch crew monitor class to function properly, your IAM policy needs per-
mission to perform the SubmitJob, TerminateJob, ListJobs, and DescribeJobs AWS Batch
API calls. In addition, to download CloudWatch logs with the 1log() method, your IAM policy
also needs permission to perform the GetLogEvents CloudWatch logs API call. For more in-
formation on AWS policies and permissions, please visit https://docs.aws.amazon.com/IAM/
latest/UserGuide/access_policies.html.

See Also

Other monitor: crew_class_monitor_aws_batch

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

Index

x definition
crew_class_definition_aws_batch, 2
crew_definition_aws_batch, 20

+ help
crew.aws.batch-package, 2

* monitor
crew_class_monitor_aws_batch, 11
crew_monitor_aws_batch, 25

+ plugin_aws_batch
crew_class_launcher_aws_batch, 7
crew_controller_aws_batch, 15
crew_launcher_aws_batch, 21

crew.aws.batch-package, 2

crew: :crew_class_launcher, 7
crew_class_definition_aws_batch, 2, 21
crew_class_launcher_aws_batch, 7, 19, 25
crew_class_monitor_aws_batch, 11, 26
crew_controller_aws_batch, 710, 15, 25
crew_definition_aws_batch, 6, 20
crew_definition_aws_batch(), 2-6
crew_launcher_aws_batch, 10, 19, 21
crew_launcher_aws_batch(), 7-10
crew_monitor_aws_batch, 15, 25
crew_monitor_aws_batch(), 1/-15
crew_tls(), 16,23

crew_worker(), 10

27

	crew.aws.batch-package
	crew_class_definition_aws_batch
	crew_class_launcher_aws_batch
	crew_class_monitor_aws_batch
	crew_controller_aws_batch
	crew_definition_aws_batch
	crew_launcher_aws_batch
	crew_monitor_aws_batch
	Index

