
Package ‘RECA’
October 12, 2022

Type Package

Title Relevant Component Analysis for Supervised Distance Metric
Learning

Version 1.7

Maintainer Nan Xiao <me@nanx.me>

Description Relevant Component Analysis (RCA) tries to find a linear
transformation of the feature space such that the effect of irrelevant
variability is reduced in the transformed space.

License GPL-3 | file LICENSE

URL https://nanx.me/RECA/, https://github.com/nanxstats/RECA

BugReports https://github.com/nanxstats/RECA/issues

Suggests MASS

Encoding UTF-8

RoxygenNote 6.1.1

NeedsCompilation no

Author Nan Xiao [aut, cre] (<https://orcid.org/0000-0002-0250-5673>)

Repository CRAN

Date/Publication 2019-05-17 20:40:03 UTC

R topics documented:

rca . 2

Index 5

1

https://nanx.me/RECA/
https://github.com/nanxstats/RECA
https://github.com/nanxstats/RECA/issues
https://orcid.org/0000-0002-0250-5673

2 rca

rca Relevant Component Analysis

Description

rca performs relevant component analysis (RCA) for the given data. It takes a data set and a set
of positive constraints as arguments and returns a linear transformation of the data space into better
representation, alternatively, a Mahalanobis metric over the data space.

The new representation is known to be optimal in an information theoretic sense under a constraint
of keeping equivalent data points close to each other.

Usage

rca(x, chunks, useD = NULL)

Arguments

x n * d matrix or data frame of original data.

chunks a vector of size N describing the chunklets: -1 in the i-th place says that point
i does not belong to any chunklet; integer j in place i says that point i belongs
to chunklet j; The chunklets indexes should be 1:number-of-chunklets.

useD optional. When not given, RCA is done in the original dimension and B is full
rank. When useD is given, RCA is preceded by constraints based LDA which
reduces the dimension to useD. B in this case is of rank useD.

Details

The three returned objects are just different forms of the same output. If one is interested in a
Mahalanobis metric over the original data space, the first argument is all she/he needs. If a trans-
formation into another space (where one can use the Euclidean metric) is preferred, the second
returned argument is sufficient. Using A and B are equivalent in the following sense:

if y1 = A * x1, y2 = A * y2 then

(x2 - x1)^T * B * (x2 - x1) = (y2 - y1)^T * (y2 - y1)

Value

A list of the RCA results:

• B: The RCA suggested Mahalanobis matrix. Distances between data points x1, x2 should be
computed by (x2 - x1)^T * B * (x2 - x1)

• RCA: The RCA suggested transformation of the data. The data should be transformed by RCA
* data

• newX: The data after the RCA transformation. newX = data * RCA

rca 3

Note

Note that any different sets of instances (chunklets), e.g. {1, 3, 7} and {4, 6}, might belong to the
same class and might belong to different classes.

Author(s)

Nan Xiao <https://nanx.me>

References

Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna Weinshall (2003). Learning Distance
Functions using Equivalence Relations. Proceedings of 20th International Conference on Machine
Learning (ICML2003)

Examples

library("MASS") # generate synthetic multivariate normal data
set.seed(42)
k <- 100L # sample size of each class
n <- 3L # specify how many classes
N <- k * n # total sample size
x1 <- mvrnorm(k, mu = c(-16, 8), matrix(c(15, 1, 2, 10), ncol = 2))
x2 <- mvrnorm(k, mu = c(0, 0), matrix(c(15, 1, 2, 10), ncol = 2))
x3 <- mvrnorm(k, mu = c(16, -8), matrix(c(15, 1, 2, 10), ncol = 2))
x <- as.data.frame(rbind(x1, x2, x3)) # predictors
y <- gl(n, k) # response

fully labeled data set with 3 classes
need to use a line in 2D to classify
plot(x[, 1L], x[, 2L],

bg = c("#E41A1C", "#377EB8", "#4DAF4A")[y],
pch = rep(c(22, 21, 25), each = k)

)
abline(a = -10, b = 1, lty = 2)
abline(a = 12, b = 1, lty = 2)

generate synthetic chunklets
chunks <- vector("list", 300)
for (i in 1:100) chunks[[i]] <- sample(1L:100L, 10L)
for (i in 101:200) chunks[[i]] <- sample(101L:200L, 10L)
for (i in 201:300) chunks[[i]] <- sample(201L:300L, 10L)

chks <- x[unlist(chunks),]

make "chunklet" vector to feed the chunks argument
chunksvec <- rep(-1L, nrow(x))
for (i in 1L:length(chunks)) {

for (j in 1L:length(chunks[[i]])) {
chunksvec[chunks[[i]][j]] <- i

}
}

https://nanx.me

4 rca

relevant component analysis
rcs <- rca(x, chunksvec)

learned transformation of the data
rcs$RCA

learned Mahalanobis distance metric
rcs$B

whitening transformation applied to the chunklets
chkTransformed <- as.matrix(chks) %*% rcs$RCA

original data after applying RCA transformation
easier to classify - using only horizontal lines
xnew <- rcs$newX
plot(xnew[, 1L], xnew[, 2L],

bg = c("#E41A1C", "#377EB8", "#4DAF4A")[gl(n, k)],
pch = c(rep(22, k), rep(21, k), rep(25, k))

)
abline(a = -15, b = 0, lty = 2)
abline(a = 16, b = 0, lty = 2)

Index

rca, 2

5

	rca
	Index

