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Abstract

Many real-world systems are profitably described as complex networks that grow over
time. Preferential attachment and node fitness are two simple growth mechanisms that
not only explain certain structural properties commonly observed in real-world systems,
but are also tied to a number of applications in modeling and inference. While there are
statistical packages for estimating various parametric forms of the preferential attachment
function, there is no such package implementing non-parametric estimation procedures.
The non-parametric approach to the estimation of the preferential attachment function
allows for comparatively finer-grained investigations of the ‘rich-get-richer’ phenomenon
that could lead to novel insights in the search to explain certain nonstandard structural
properties observed in real-world networks. This paper introduces the R package PAFit,
which implements non-parametric procedures for estimating the preferential attachment
function and node fitnesses in a growing network, as well as a number of functions for
generating complex networks from these two mechanisms. The main computational part
of the package is implemented in C++ with OpenMP to ensure scalability to large-scale
networks. In this paper, we first introduce the main functionalities of PAFit through
simulated examples, and then use the package to analyze a collaboration network between
scientists in the field of complex networks. The results indicate the joint presence of ‘rich-
get-richer’ and ‘fit-get-richer’ phenomena in the collaboration network. The estimated
attachment function is observed to be near-linear, which we interpret as meaning that
the chance an author gets a new collaborator is proportional to their current number
of collaborators. Furthermore, the estimated author fitnesses reveal a host of familiar
faces from the complex networks community among the field’s topmost fittest network
scientists.

Keywords: temporal networks, dynamic networks, preferential attachment, fitness, rich-get-
richer, fit-get-richer, R, C++, Rcpp, OpenMP.

1. Introduction1

Since the end of the last century, complex networks have been increasingly used in modeling
many temporal relations found in diverse fields (Dorogovtsev and Mendes 2003; Caldarelli

1This vignette was created with package PAFit version 1.0.0.7. Some of the numerical results shown here
might be slightly different from those created with the latest version.
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2007; Newman 2010). Some notable examples include collaboration networks between au-
thors in a scientific field (Newman 2001), connection networks between computers on the
Internet (Barabási et al. 2000), and sexual relation networks between members of a com-
munity (Liljeros et al. 2001). The primary motivation for using complex networks as a
simplified representation of real-world systems is that they shed light on the behaviors of
complex systems through the study of underlying patterns of connections. Although this is
an over-simplification for systems depending heavily on domain-specific details, this approach
nevertheless offers a first view of a system’s topological properties, and can be used to guide
subsequent in-depth analyses.

Among the most important real-world network structural properties is degree distribution.
Degree distribution lets us understand the proportion of highly and lowly connected nodes in
a network. Since the highly connected nodes are key components of a network, this under-
standing in turn sheds light on the answers of important practical questions, including how to
prevent the spreading of rumors (Nekovee et al. 2007), how to stop a virus outbreak (Pastor-
Satorras and Vespignani 2001), and how to guard against cybernetic attacks (Albert et al.
2000).

The degree distributions of many real-world networks have been found to be heavy-tailed (Al-
bert and Barabási 1999). The best-known heavy-tailed distribution in network science is the
power-law, which is a distribution where the number of nodes in a network with degree
k is proportional to k−γ with γ > 1. Besides the power-law, there is emerging evidence
that real-world network degree distributions have other heavy-tailed forms, including the log-
normal (Redner 2005), exponential (Dunne et al. 2002), stretched exponential (Newman et al.
2002), and power-law with exponential cut-off (Clauset et al. 2009).

All of these heavy-tailed distributions differ from the light-tailed binomial degree distribution,
which is characteristic of networks produced by the classical Erdös-Rényi (ER) random graph
model (Erdös and Rényi 1959). This observation prompted network scientists to search for
new modeling ingredients capable of explaining heavy-tailed degree distributions. What they
found is that temporal complex network models incorporating growth mechanisms offer a
powerful modeling framework for achieving this end.

Temporal complex network models, or temporal network models for short, are probabilistic
generative models of real-world networks that change with time. In its most common form, a
temporal network model assumes that a network grows gradually from some initial state by the
addition of new nodes and edges over a large number of discrete time-steps. Some well-known
basic models in the field of complex networks are the Barabási-Albert (BA) model (Albert
and Barabási 1999) and the Bianconi-Barabási (BB) model (Bianconni and Barabási 2001).
More complex growth models that are used in the field include exponential random graph
models (Ripley et al. 2018; Krivitsky and Handcock 2018b) and dynamic stochastic block
models (Matias and Miele 2016). Growth mechanisms, which govern how a node acquires
new edges in the growth process, are the most important elements that distinguish different
temporal network models.

This paper focuses on estimating two interpretable growth mechanisms: preferential attach-
ment (PA) and node fitness. In the PA mechanism, the probability Pi(t) that a node vi
acquires a new edge at time t is proportional to a positive function, Aki(t), of its current
degree ki(t). The function Ak is called the attachment function. The name ‘preferential
attachment’ stems from the motivation for the mechanism: if Ak is an increasing function,
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a highly connected node will acquire more edges than a lowly-connected node, which is an
appealing property in many real-world situations. From now, we will say that PA exists if
Ak is an increasing function. The opposite of PA, which we call anti-PA, occurs when Ak is
a decreasing function. Note, however, that the meaning we use here differs from the original
meaning of the term ‘preferential attachment’ used in the BA model, which means only the
linear case of Ak = k. This linear form in fact has been long known in other fields with various
names such as ‘rich-get-richer’ (Simon 1955) and ‘cumulative advantage’ (Price 1976). When
Ak assumes the log-linear form of kα, with α called the attachment exponent, we have the
generalized BA model (Krapivsky et al. 2001).

In contrast with the PA mechanism, in the fitness mechanism the probability Pi(t) that a
node vi acquires a new edge depends only on the positive number ηi. The quantity ηi is called
the node fitness, or just fitness, of vi and can be interpreted as its intrinsic attractiveness. The
fitness mechanism offers a simple way to express the variance in edge-acquisition potential
between nodes of the same degree. For example, two early-career scientists with roughly
the same number of collaborators at some point in time may acquire different numbers of
collaborators in the future based on their intrinsic fitnesses.

The PA and node fitness mechanisms combine to produce a wide range of degree distributions.
In their combined form, the probability Pi(t) is proportional to the product of Aki(t) and ηi:

Pi(t) ∝ Aki(t) × ηi. (1)

Based on the functional form of Ak and the distribution of ηi’s, the model defined by Equa-
tion 1 can produce networks with various degree distributions (Bianconni and Barabási 2001;
Caldarelli et al. 2002; Borgs et al. 2007; Kong et al. 2008). In Section 2, we will discuss the
relation of Equation 1 with existing statistical models.

Equation 1 has a number of applications. Based on the functional forms of Ak and ηi, we can
test for the presence of one and/or the other of the ‘rich-get-richer’ and ‘fit-get-richer’ phenom-
ena in a temporal network (Pham et al. 2016). These two mechanisms have been advanced to
explain another phenomenon called the ‘generalized friendship paradox’ (Feld 1991; Eom and
Jo 2014; Momeni and Rabbat 2015). They are also used in inference problems in biological
networks (Sheridan et al. 2010; Guetz and Holmes 2011), the World Wide Web (Kong et al.
2008), Internet topology graphs (Bezáková et al. 2006), and citation networks (Wang et al.
2013; Sinatra et al. 2016; Ronda-Pupo and Pham 2018). Finally, we can classify real-world
temporal network data based on the estimated attachment exponent of Ak (Kunegis et al.
2013).

While there are existing R packages that estimate PA in a growing network, including the pack-
ages tergm (Krivitsky and Handcock 2018b) and RSiena (Ripley et al. 2018), these packages,
however, rely on parametric methods to estimated the Ak function. This means that one has
to assume a functional form for Ak, rather than learning it from observed data without con-
straint. Non-parametric estimation of Ak allows for a finer inspection of the ‘rich-get-richer’
phenomenon (Pham et al. 2015, 2016), and such methods have been used to provide clues
to explain irregularities observed in real-world degree distributions (Sheridan and Onodera
2018).

This paper introduces the R package PAFit (Pham et al. 2018), which fills the gap with an
implementation of the standard PA and node fitness non-parametric estimation procedures.
In particular, we implement Jeong’s method (Jeong et al. 2003), Newman’s method (Newman
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2001) and the PAFit method (Pham et al. 2015, 2016) in the package. The first two are heuris-
tic methods that are widely used to estimate non-parametrically the attachment function Ak
in isolation, while the last one is a statistical method that can non-parametrically estimate
either Ak (or ηi) in isolation or simultaneously estimate the two mechanisms. Although using
PAFit is advisable in almost every circumstance, Jeong’s method and Newman’s method are
still widely used and might still be appropriate in certain situations. Therefore, the inclu-
sion of the two heuristic methods in the package is warranted. We discuss their strengths
and shortcomings in Section 2 when we provide an overview of the methodology and related
statistical models.

The package also implements a variety of functions to simulate temporal networks from the PA
and node fitness mechanisms, as well as functions to plot the estimated results and underlying
uncertainties. We review PAFit’s main functions in Section 3. Before demonstrating their
usages on three simulated examples in Section 5, we discuss how PAFit relates with existing
network analysis packages in Section 4. We provide a systematic simulation to asses the
results of the non-parametric joint estimation in Section 6, before showing a complete end-
to-end work-flow analyzing a collaboration network of scientists from the field of complex
networks in Section 7. Finally, concluding remarks are given in Section 8.

2. Mathematical background

Here we review the standard methods for estimating the attachment function Ak and node
fitnesses ηi in a temporal network. In Section 2.1, we state the network growth model used
in the package as well as discuss its relation with exiting statistical models. We review the
estimation of Ak in isolation in Section 2.2, then the estimation of the ηi’s in isolation in
Section 2.3, and finally the joint estimation of Ak and the ηi’s in Section 2.4.

2.1. Network model

First we describe the General Temporal (GT) model (Pham et al. 2016) used in PAFit.
The model is a generalization of many well-known temporal network models in the complex
network field.

Starting from some given initial graph G0, the GT model generates a temporal network
sequentially as follows: at time-step t ≥ 1, the networkGt is obtained by adding new edges and
new nodes toGt−1. The number of new edges and new nodes added at time t is denoted asm(t)
and n(t), respectively. The model assumes that the parameters governing the distributions of
G0, m(t) and n(t) do not involve Ak and the ηi’s. Note that the term ki(t) is defined as the
degree of node vi at the onset of time-step t. On top of these structural preconditions, the
GT model assumes that the probability that a node vi with degree ki(t) receives a new edge
at time t is given by the formula of Equation 1.

The GT model includes a handful of well-known growing network models, based on PA and
node fitness as special cases; see Table 1 for a summary. Unlike the BA or BB models, the
GT model allows for the emergence of new edges between old nodes and can handle both
undirect and directed networks. We refer readers to Supplementary Information Section S2.2
in Pham et al. (2016) for the definition of the model in the case of undirected networks. The
GT model is related to models used in the R packages RSiena and tergm. But we defer a
discussion of these packages to Section 4.
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Temporal network model Attachment function Node fitness

Growing ER model (Callaway et al. 2001) Ak = 1 ηi = 1
BA model Ak = k ηi = 1
Caldarelli model Ak = 1 Free
BB model Ak = k Free

Table 1: Some well-known special cases of the GT model as defined by Equation 1.

Looking beyond the field of complex networks, the GT model bears some similarities to
the contagious Poisson process (Coleman 1964; Allison 1980) and the conditional frailty
model (Kelly and Lim 2000; Box-Steffensmeier and De Boef 2006). In the contagious Pois-
son process, the initial propensity of each node plays a similar role to that of node fitness
and the rate of enforcement represents the PA mechanism. In the conditional frailty model,
while the frailty of each node describes the heterogeneity among nodes and thus is similar to
node fitness, the event-based baseline hazard rate has the same effect as the non-parametric
function Ak.

2.2. Attachment function estimation

The methods for estimating the attachment function Ak in isolation assume a simplified
version of Equation 1, in which the ηi are assumed to be 1. Thus the probability Pi(t) in
Equation 1 depends only on Ak. Perhaps the most frequently-encountered parametric version
of this model is the log-linear form Ak = kα with attachment exponent α. Network scientists
are particularly interested in estimating α, since the asymptotic degree distribution of the
network corresponds to simple regions of α. If α is less than unity (the sub-linear case), then
the degree distribution is a stretched exponential, while in the super-linear case of α > 1, one
node will eventually get all the incoming new edges (Krapivsky et al. 2001). It is only the
linear case of α = 1 that gives rise to a power-law distribution.

Concerning the above model, there are three main methods for estimating Ak: Jeong’s
method (Jeong et al. 2003), Newman’s method (Newman 2001), and PAFit (Pham et al.
2015). Jeong’s method basically makes a histogram of the number of new edges nk connected
to a node with degree k, then divides nk by the number of nodes with degree k in the system
to get Ak (Jeong et al. 2003). Jeong’s method has the merit of being simple, but estimates
obtained using the method are subject to high variance and low accuracy (Pham et al. 2015).
By contrast, Newman’s method combines a series of histograms for lower variance and higher
accuracy (Newman 2001). Note that in PAFit we implemented a corrected version of New-
man’s original method (Pham et al. 2015). The main drawback of Newman’s method is that
the mathematical assumption behind its derivation holds only when α = 1, thus the method
amounts to an approximation when α 6= 1 (Pham et al. 2015).

The final method is PAFit (Pham et al. 2015). It iteratively maximizes an objective function
that is a combination of the log-likelihood of the model with a regularization term for Ak by
a Minorization-Maximization (MM) algorithm (Hunter and Lange 2000). There is a hyper-
parameter, called r, in the method that controls the strength of the regularization. PAFit
chooses r automatically by cross-validation (Pham et al. 2016). We defer the details to
Section 2.4. The method is not only able to recover Ak accurately, but also can estimate the
standard deviation of the estimated Ak for each k (Pham et al. 2015). Its main drawback is
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that it might be slow, since it is an iterative algorithm.

2.3. Node fitness estimation

When we consider only node fitnesses, there are two generative models in the literature with
different assumptions regarding the functional form of Ak in Equation 1. While the Caldarelli
model (Caldarelli et al. 2002) assumes that Ak is 1 for all k, the BB model (Bianconni and
Barabási 2001) assumes that Ak = k. Both models have been shown to generate networks
with various heavy-tailed distributions (Borgs et al. 2007; Kong et al. 2008).

Node fitnesses in both models can be estimated by variants of the PAFit method proposed
in Pham et al. (2016), by either setting Ak = k for the BB model or Ak = 1 for the Caldarelli
model. These estimation methods use MM algorithms that maximize the corresponding log-
likelihood functions with a regularization term that regularizes the distribution of the ηi’s.
More specifically, the inverse variance of this distribution is controlled by a hyper-parameter,
called s, which is chosen automatically by cross-validation. We defer a more detail discussion
to the next section. We note that node fitnesses in the BB model can also be estimated
by the method in Kong et al. (2008). But since PAFit has been shown to outperform this
method (Pham et al. 2016), we did not include it in the package.

2.4. Joint estimation of the attachment function and node fitnesses

Finally, by using the full model in Equation 1 the method PAFit in Pham et al. (2016) can
jointly estimate Ak and ηi. We note this full model includes all the temporal network models
shown in Table 1. For a more complete table, see Table 1 in Pham et al. (2016).

The objective function of PAFit is a combination of the log-likelihood of the full model defined
by Equation 1 and two regularization terms: one for Ak and one for ηi. While we refer readers
to Supplementary Information Section S2.3 in Pham et al. (2016) for a complete presentation,
we will sketch here the log-likelihood function for the case of directed networks. Assume the
set of observed snapshots is {Gt}Tt=0. Let A = [A0 A1 · · ·AK−1]> be the vector of the PA
function and η = [η1 η2 · · · ηN ] be the vector of node fitnesses. Here K is the maximum degree
appearing in the growth process and N is the total number of nodes at the end of the process.
Let zi(t) be the number of new edges connected to node vi at time-step t. Equation 1 implies
that {zi(t)}Ni=1 follows a multinomial distribution with parameters {πi(t)}Ni=1, where

πi(t) =
Aki(t)ηi∑N
j=1Akj(t)ηj

. (2)

Here we use the convention kj(t) = −1 for a node that did not exist at time-step t and
A−1 = 0. Using Equation 2, one can write the likelihood of each snapshot G1, · · · , GT . The
log-likelihood function of the temporal network {Gt}Tt=0 is then the sum of the log-likelihood
of each snapshot and is equivalent to:

l(A,η) =
T∑
t=1

N∑
i=1

zi(t) logAki(t) +
T∑
t=1

N∑
i=1

zi(t) log ηi −
T∑
t=1

N∑
i=1

zi(t) log
N∑
j=1

Akj(t)ηj + C, (3)

with C being the logarithm of the product of the probability mass functions of G0, m(t), and
n(t). Since the GT model, as stated in Section 2.1, assumes that the parameters governing
the distributions of G0, m(t) and n(t) do not involve Ak and ηi, we can treat C as a constant.
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The regularization term for Ak is defined by

regA = −r
K−2∑
k=1

wk (logAk+1 + logAk−1 − 2 logAk)
2 , (4)

with r ≥ 0, wk =
∑T

t=1mk(t) and mk(t) the number of edges that connect to a degree k node
at time-step t. This term controls the shape of Ak. When r is large, Ak becomes more linear
on a log-scale. In limiting as r approaches infinity, we effectively assume that Ak = kα (Pham
et al. 2016). Thus this covers the case of α = 1 in the BA model and the BB model, and the
case of α = 0 in the growing ER and the Caldarelli model.

The regularization term for the node fitnesses is defined by

regF =
N∑
i=1

((s− 1) log ηi − sηi), (5)

with s > 0. This term is the sum of the logarithms of Gamma distribution densities with
mean 1 and variance 1/s. The regularization is equivalent to placing such Gamma distribu-
tions as priors independently for each node fitness ηi. The larger the value of s, the more
tightly concentrated the values of ηi become. If s is infinitely large, then all ηi will take the
same value. This is equivalent to estimating the attachment function in isolation.

To conclude: joint estimation with the above regularization terms also compasses the two
cases of estimating either Ak or ηi in isolation. In particular, we maximize the following
objective function:

J(A,η) = l(A,η) + regA + regF ,

with an MM algorithm. At each iteration, the algorithm replaces the objective function with
an easier-to-maximize surrogate function and this surrogate function is maximized instead.
The surrogate function is chosen in such a way that the objective function value is guaranteed
to be nondecreasing over iterations. We refer the readers to Hunter and Lange (2004) for the
definition of a surrogate function and the techniques used to derive them. For a surrogate
function, the variables are often separable, i.e., the partial derivative of one variable does not
involve the others, and thus the maximization at each iteration, i.e., finding the variables
by setting all the partial derivatives to zero, can be parallelized. While we refer readers to
Supplementary Information Section S2.4 of Pham et al. (2016) for a detailed discussion, the
essence of the MM algorithms in PAFit is to linearize the term log

∑N
j=1Akj(t)ηj in Equation 3

and to apply Jensen’s inequality to make the variables in Equation 4 separable.

As mentioned in the two previous sections, the values of r and s are automatically selected
by cross-validation. In particular, the dataset is divided into a learning part {Gt}T∗0 and
a testing part {Gt}TT∗ , where T∗ is the smallest positive number such that the ratio of the

number of new edges in the learning part, i.e.,
∑T∗

t=1

∑N
i=1 zi(t), to that of the whole dataset,

i.e.,
∑T

t=1

∑N
i=1 zi(t), is at least p = 0.75 (the default value). For each combination of r and

s, we use the learning data to get the estimated value of A and η and plug these estimated
values into Equation 3 to calculate the log-likelihood of the testing data. The combination
of r and s that maximize this log-likelihood is then chosen. The method then re-estimates A
and η using the whole dataset with the chosen combination of r and s.
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3. Package overview

The PAFit package provides functions to simulate various temporal network models, gather
essential network statistics from raw input data, and use these summarized statistics in the
estimation of Ak and the ηi values. The heavy computational parts of the package are im-
plemented in C++ through the use of the Rcpp package (Eddelbuettel and François 2011;
Eddelbuettel 2013; Eddelbuettel and Balamuta 2017). Furthermore, multi-core machine users
can enjoy a hassle-free speed up through OpenMP parallelization mechanisms implemented in
the code. Apart from the main functions, the package also includes a real-world collaboration
network dataset between scientists in the field of complex networks. Table 2 summarizes the
main functions in the package. In what follows, we will review the main package functions
one by one.

Firstly, most well-known temporal network models based on PA and node fitness mecha-
nisms can be easily simulated using the package. PAFit implements generate_BA for the
BA model, generate_ER for the growing ER model, generate_BB for the BB model, and
generate_fit_only for the Caldarelli model. These functions have many customizable op-
tions. For example, the number of new edges at each time-step is a tunable stochastic variable;
see Table 3 for descriptions of the parameters. They are actually wrappers of the more power-
ful generate_net function, which simulates networks with more flexible attachment function
and node fitness settings.

Each temporal network model generation function outputs a PAFit_net object, which is a
list with four fields: type, fitness, PA, and graph. The type field is a string indicating the
type of network: "directed" or "undirected". This field is "directed" for the networks
generated by the simulation functions. The fitness and PA fields contain the true node
fitnesses and PA function, respectively. The graph field contains the generated temporal
network in a three-column matrix format. Each row of this matrix is of the form (id_1 id_2

time_stamp). While id_1 and id_2 are IDs of the source node and the destination node,
respectively, time_stamp is the birth time of the edge. This is the so-called edge-list format in
which raw temporal networks are stored in many on-line repositories (Kunegis 2013; Leskovec
and Krevl 2014). We will discuss how to use functions provided by PAFit to convert this
edge-list format to formats used in other network analysis packages in the next section. One
can apply the function plot directly to a PAFit_net object to visualize its contents.

The second functionality of PAFit is implemented in get_statistics. With its core part
implemented in C++, this function efficiently collects all temporal network summary statistics
that are needed in the subsequent estimation of PA and node fitnesses. The input network
is assumed to be stored as a PAFit_net object. One can use the function graph_from_file

to read an edge-list graph from a text file into a PAFit_net object, or convert an edge-list
matrix to this class by the function as.PAFit_net.

The edge-list matrix is assumed to be in the same format as PAFit simulated graphs, i.e.,
each row is of the form (id_1 id_2 time_stamp). The node IDs are required to be integers
greater than −1, but need not to be contiguous. Note that (id -1 t) describes a node id

that appeared at time t without any edge. There are no assumptions on the values or data
types of time_stamp, other than that their chronological order is the same as what the R
function order returns. Examples of timestamps that satisfy this requirement are the integer
vector 1:T, the format ‘yyyy-mm-dd’, and the POSIX time.

The get_statistics function automatically handles both directed and undirected networks.
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Parameter (default value) Description

N (1000) total number of nodes in the network
num_seed (2) initial graph is a circle with num_seed nodes
multiple_node (1) number of new nodes added at each time-step
m (1) number of edges of a new node
alpha (1) attachment exponent α when we assume Ak = kα

mode_f ("gamma") distribution of node fitnesses: gamma, log-normal or power-law
s (10) distribution of node fitnesses has mean 1 and variance 1/s

Table 3: Main parameters in network generating functions in the PAFit package.

It returns a list containing many statistics that can be used to characterize the network
growth process. Notable fields are m_tk containing the number of new edges that connect
to a degree-k node at time-step t, and node_degree containing the degree sequence, i.e., the
degree of each node at each time-step.

The most important functionality of PAFit relates to the estimation of the attachment func-
tion and node fitnesses of a temporal network. This is implemented through various methods.
There are three usages: estimation of the attachment function in isolation, estimation of node
fitnesses in isolation, and the joint estimation of the attachment function and node fitnesses.

The functions for estimating the attachment function in isolation are: Jeong for Jeong’s
method, Newman for Newman’s method, and only_A_estimate for the PAFit method in Pham
et al. (2015). For estimation of node fitnesses in isolation, only_F_estimate implements a
variant of the PAFit method in Pham et al. (2016). For the joint estimation of the attachment
function and node fitnesses, we implement the full version of the PAFit method (Pham et al.
2016) in joint_estimate. The input of these functions is the output object of the function
get_statistics. The output objects of these functions contain the estimation results as well
as some additional information pertaining to the estimation process.

In Table 4, we show the input parameters of joint_estimate, the most important function in
PAFit. This function takes the temporal network net_object and the summarized statistics
net_stat as the main inputs. There are three parameters that control the estimation process:
p, stop_cond, and mode_reg_A. The parameter p specifies the ratio of the number of new edges
in the learning data to that of the full data in the cross-validation step. Following Pham et al.
(2016), its default value is set at 0.75. The parameter stop_cond specifies the threshold ε: the
iterative algorithm will continue until the relative difference in the objective function J(A,η)
between two successive iterations falls below this threshold (Pham et al. 2016; Zhou et al.
2011). The default value ε = 10−8 is set following Pham et al. (2016). The parameter
mode_reg_A specifies the regularization term for Ak. The default value mode_reg_A = 0

corresponds to the regularization term in Equation 4 (Pham et al. 2016). When mode_reg_A

= 1, the following regularization term is used:

−r
K−1∑
k=2

wk

{
logAk+1 − logAk
log (k + 1)− log k

− logAk − logAk−1
log k − log (k − 1)

}2

. (6)

Although this regularization term will enforce exactly the form Ak = kα, it is significantly
slower to optimize this regularization term while the improvement over Equation 4 is little.

Finally, although one can roughly assess whether PA exists in the network by visual inspection



Thong Pham, Paul Sheridan, Hidetoshi Shimodaira 11

Parameter Default value

net_object no default value
net_stat get_statistics(net_object)

p 0.75
stop_cond 10−8

mode_reg_A 0

Table 4: Parameters of the joint_estimate function and their default values.

of the estimated PA function, Handcock and Jones (2004) provide a method to test whether
the linear PA-only case, i.e., Ak = k and ηi = 1, is consistent with a given degree vector.
We implemented this method in the function test_linear_PA. This function chooses the
best fitted distribution to a given degree vector among a set of distributions by comparing
the Akaike Information Criterion (AIC) (Akaike 1974) or the Bayesian Information Crite-
rion (BIC) (Raftery 1995). The set of distributions are Yule, Waring, Poisson, geometric, and
negative binomial. The linear PA-only case corresponds to Yule or Waring (Yule 1925; Irwin
1963).

4. Related network packages

Since network analysis has been an important field for a long time, various aspects of it have
been implemented in a large number of software packages. To our best effort, we have con-
firmed that the non-parametric joint estimation of PA and fitness mechanisms in a growing
network is not implemented elsewhere. Restricting the discussion to packages in R, there are
some notable implementations of related statistical network models. For example, stochastic
block models in the packages igraph (Csardi and Nepusz 2006), sna (Butts 2016), blockmod-
els (INRA and Leger 2015) and dynsbm (Matias and Miele 2016, 2018); exponential random
graph models in the packages ergm (Hunter et al. 2008; Handcock et al. 2018), tergm (Krivit-
sky and Handcock 2018b), hergm (Schweinberger and Luna 2018), btergm (Leifeld et al. 2018),
and RSiena (Ripley et al. 2018); and latent space models in the package latentnet (Krivitsky
and Handcock 2008, 2018a).

The dynsbm package estimates a dynamic stochastic block model in which nodes are assumed
to belong to some latent groups which can vary with time, and the edge weight between two
nodes at any time follows some parametric distribution. The package can deal with both
discrete and continuously weighted edges.

The igraph package contains the functions sample_pa and sample_growing which are the
equivalents of generate_BA and generate_ER in PAFit, respectively. Although igraph also
generates networks from many other mechanisms, it does not contain any function for esti-
mating the PA function and/or node fitnesses. It does contain many functionalities for dealing
with stochastic block models and various other network models.

Some of the above packages are included in the extensive meta-package statnet (Handcock
et al. 2008, 2016). In statnet, packages that deal with temporal networks are: networkDy-
namic (Butts et al. 2016), tsna (Bender-deMoll and Morris 2016), and tergm. The network-
Dynamic package provides the networkDynamic class to store dynamic networks and various
functions to manipulate them. The tsna package calculates many temporal statistics of a
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dynamic network stored in a networkDynamic object.

The closest packages to PAFit that estimate PA in a temporal network are tergm and RSiena,
which implement sophisticated continuous-time and discrete-time Markov models. Regarding
PA, all the implemented options in tergm and RSiena pertain to the parametric estimation
of Ak, in contrast to the non-parametric estimation methods implemented in PAFit. Although
it might be theoretically possible to describe a non-parametric Ak function in tergm and
RSiena, they contain no regularization terms for the joint estimation of the non-parametric
PA function and node fitnesses. Joint estimation without regularization terms is very likely
unable to recover the true parameters, since the number of parameters is typically high.
On the other hand, PAFit is specifically designed for estimating Ak non-parametrically with
node fitnesses, since it has two regularization terms in Equations 4 and 5, together with the
cross-validation step for selecting suitable regularization parameters.

PAFit provides functionalities to communicate with existing network analysis packages. Using
to_networkDynamic and from_networkDynamic, one can convert a PAFit_net object to a
networkDynamic’s networkDynamic object and vice versa. The functions to_igraph and
from_igraph do the same for igraph’s igraph objects. The extensive functions of statnet
and igraph packages can then be used. One can also output the graph stored in a PAFit_net

object to the universal gml format by the function graph_to_file, or read from a gml file by
the function graph_from_file.

5. Package usage

Here we show three usages of PAFit: the estimation of the attachment function Ak in isolation
in Section 5.1, the estimation of node fitnesses ηi in isolation in Section 5.2, and the joint
estimation of Ak and the ηi values in Section 5.3.

5.1. Attachment function estimation

First we generate a network from a directed version of the BA model, called Price’s model (Price
1976). From the initial graph with two nodes and one edge, one new node with m = 5 new
edges is added at each time-step until the number of nodes is N = 1000.

R> set.seed(1)

R> library("PAFit")

R> sim_net_1 <- generate_BA(N = 1000, m = 5)

Recall that Ak is linear in the BA model, i.e., the attachment exponent α is equal to 1, and
the node fitnesses are uniform.

One can observe the emergence of hubs in this network by visualizing the generated graph at
various time-steps by the function plot. The following script plots the network snapshot at
time t = 1 in Figure 1a and its corresponding degree distribution in Figure 1d:

R> plot(sim_net_1, slice = 1, arrowhead.cex = 3, vertex.cex = 3)

R> plot(sim_net_1, slice = 1, plot = "degree", cex = 3, cex.axis = 2,

+ cex.lab = 2)
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Note that if the network is directed, as it is in this example, the option plot = "degree" will
plot the in-degree distribution. In the same way, we plot network snapshots at time t = 10
and t = 100 in Figures 1b and 1c and their corresponding degree distributions in Figures 1e
and 1f.

(a) Snapshot at t = 1. (b) Snapshot at t = 10. (c) Snapshot at t = 100.
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(e) Degree distribution at t = 10.
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(f) Degree distribution at t =
100.

Figure 1: Network snapshots and their corresponding in-degree distributions at time-steps
t = 1, 10, and 100. The temporal network, sim_net_1, is generated from Price’s model with
total number of nodes N = 1000.

The next step is to use the function get_statistics to get the summary statistics for the
temporal network:

R> stats_1 <- get_statistics(sim_net_1)

With stats_1 containing all the needed summary statistics, we then apply the three methods
of estimating the attachment function in isolation:

R> result_Jeong <- Jeong(sim_net_1, stats_1)

R> result_Newman <- Newman(sim_net_1, stats_1)

R> result_PA_only <- only_A_estimate(sim_net_1, stats_1)

Let us explain result_PA_only in more detail. Information on the estimated results as well
as the estimation process can be viewed by invoking summary:
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R> summary(result_PA_only)

Estimation results by the PAFit method.

Mode: Only the attachment function was estimated.

Selected r parameter: 0.1

Estimated attachment exponent: 1.001139

Attachment exponent ± 2 s.d.: (0.9908913,1.011387)

-------------------------------------------

Additional information:

Number of bins: 50

Number of iterations: 63

Stopping condition: 1e-08

As stated in Section 2, the PAFit method first finds the r parameter, which regularizes the PA
function, by cross-validation, and then estimates Ak using the chosen r. The estimated func-
tion can be accessed via $estimate_result$k and $estimate_result$A of result_PA_only.
From this estimated function, the attachment exponent α (when we assume Ak = kα)
and its standard deviation are also estimated. Here α̂ is 1.001 ± 0.01 as we can see from
the output of summary. These values can be accessed via $estimate_result$alpha and
$estimate_result$ci.

The output also reveals that PAFit applies binning with 50 bins by default. In this procedure,
we divide the range of k into bins consisting of consecutive degrees, and assume that all k
in a bin have the same value of Ak. Binning is an important regularization technique that
significantly stabilizes the estimation of the attachment function (Pham et al. 2015). In this
example, the center of each bin is stored in the field $center_k of stats_1.

Since the center of a bin is also the PA value corresponding to that bin in the linear PA case,
we can plot the estimated attachment function together with the true attachment function
using the following script, which produces the plot of Figure 2a. The options min_A and
max_A specify the minimum and maximum values in the vertical axis of the plot, respectively.

R> plot(result_PA_only,stats_1, min_A = 1, max_A = 2000,

+ cex = 3, cex.axis = 2, cex.lab = 2)

R> lines(stats_1$center_k, stats_1$center_k, col = "red")

The estimation results of Jeong’s method and Newman’s method can be plotted in a similar
way, and are shown in Figures 2b and 2c, respectively.

Overall, Newman’s method and PAFit estimate the attachment function Ak about equally
well, while Jeong’s method is found to underestimate the function and also exhibits high vari-
ance. This can also be observed in the estimated attachment exponent of the three methods:
Newman’s method and PAFit recover the true α, while Jeong’s method underestimates it.
Note that in PAFit we also obtain the interval of the estimated Ak ± 2 s.d. (lightblue region
in Figure 2a), which are unavailable in the other two methods. This is a significant advantage
of PAFit over the other two methods since it allows the user to quantify uncertainties in the
result.

5.2. Node fitnesses estimation



Thong Pham, Paul Sheridan, Hidetoshi Shimodaira 15

Degree k

A
tta

ch
m

en
t f

un
ct

io
n

1 10 100 1000

1
10

10
0

10
00

(a) PAFit
(α̂ = 1.001± 0.01)
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(b) Jeong’s method
(α̂ = 0.96± 0.07)
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(c) Newman’s method
(α̂ = 1.01± 0.02)

Figure 2: Estimating the attachment function in isolation from sim_net_1. The true attach-
ment function is Ak = kα with attachment exponent α = 1. We also show the estimated α
and the interval of the estimated α ± 2 s.d. provided by each method.

Here we estimate node fitnesses from a BB model generated network with the assumption
that Ak = k. To demonstrate the functionality of the package, we generate a BB network
with a nonstandard setting:

R> sim_net_2 <- generate_BB(N = 1000, num_seed = 100, multiple_node = 100,

+ m = 15, s = 10)

This network grows from a seed network with N0 = 100 nodes where the nodes form a line
graph. The value of N0 can be specified by num_seed. At each time-step we add n = 100
new nodes where each node has m = 15 new edges. The values of n and m can be specified
via multiple_node and m, respectively. The total number of nodes in the final network is
N = 1000. Finally, the distribution from which we generate node fitnesses is the Gamma
distribution with mean 1 and inverse variance s = 10.

Next we get the network summary statistics and then apply the estimation function:

R> stats_2 <- get_statistics(sim_net_2)

R> result_fit_only <- only_F_estimate(sim_net_2, stats_2)

R> plot(result_fit_only, stats_2, plot = "f",

+ cex = 2, cex.axis = 1.5, cex.lab = 1.5)

The final line of the snippet generates the distribution of estimated node fitnesses shown in
Figure 3a.

The function only_F_estimate estimates node fitnesses under the assumption that Ak = k
by default. But one also can estimate node fitnesses in the Caldarelli model, i.e., Ak = 1
for all k, with the option model_A = "Constant". The function only_F_estimate works by
first finding the estimated value ŝ of s by cross-validation, and then using ŝ in the subsequent
estimation of node fitnesses. The summary information of the estimation result can be viewed
by invoking summary:

R> summary(result_fit_only)
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(b) Estimated fitnesses versus true fitnesses.

Figure 3: Estimating node fitnesses in isolation from sim_net_2, which is generated with
attachment function Ak = k. The true node fitnesses are sampled from a Gamma distribution
with mean 1 and inverse variance 10. The attachment function in the estimation method is
fixed at Ak = k. In panel b, we only plot nodes for which the number of acquired new edges
is at least 5.

Estimation results by the PAFit method.

Mode: Only node fitnesses were estimated.

Selected s parameter: 8

-------------------------------------------

Additional information:

Number of bins: 50

Number of iterations: 19

Stopping condition: 0.00000001

The method slightly under-estimated s. We can check whether the node fitnesses were esti-
mated well by plotting the estimated fitnesses versus the true fitnesses by running the following
command:

R> plot(result_fit_only, stats_2, true_f = sim_net_2$fitness,

+ plot = "true_f", cex = 2, cex.axis = 1.5, cex.lab = 1.5)

This will produce the plot of Figure 3b. It turns out that the estimated node fitnesses agree
pretty well with the true node fitnesses. We note that the light blue band around the η̂i
values depicts the intervals of η̂i ± 2 s.d.. The upper and lower values can be accessed via
$estimate_result$upper_f and $estimate_result$lower_f of result_fit_only, respec-
tively.

5.3. Joint estimation of the attachment function and node fitnesses
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Here we show how to estimate the attachment function and node fitnesses simultaneously.
We need to assume in Section 5.1 the equality of all ηi for the estimation of Ak in isolation,
and in Section 5.2 a specific functional form of Ak for the estimation of ηi in isolation. Such
assumptions become unnecessary when we perform joint estimation, since the appropriate
functional forms will be automatically enforced through the regularization parameters r and s,
which will be chosen by cross-validation. We recommend the joint estimation procedure as
the standard estimation procedure in this package, unless there is a specific reason to justify
the one or the other of these assumptions.

This time we generate a network in which the attachment function is Ak = kα with α = 0.5
and the Gamma distribution of node fitnesses has mean 1 and variance 1/s with s = 10:

R> sim_net_3 <- generate_net(N = 1000, num_seed = 100, multiple_node = 100,

+ m = 15, s = 10, alpha = 0.5)

We then apply joint_estimation:

R> stats_3 <- get_statistics(sim_net_3)

R> result_PAFit <- joint_estimate(sim_net_3, stats_3)

R> summary(result_PAFit)

Estimation results by the PAFit method.

Mode: Both the attachment function and node fitness were estimated.

Selected r parameter: 10

Selected s parameter: 18.75

Estimated attachment exponent: 0.5168941

Attachment exponent ± 2 s.d.: (0.5097277,0.5240605 )

-------------------------------------------

Additional information:

Number of bins: 50

Number of iterations: 596

Stopping condition: 0.00000001

We can plot the estimated attachment function as in Figure 4a, and the distribution of the
η̂i’s as in Figure 4b with the following code:

R> plot(result_PAFit, stats_3, min_A = 1, max_A = 40,

+ cex = 3, cex.axis = 2, cex.lab = 2)

R> lines(stats_3$center_k, stats_3$center_k^0.5, col = "red")

R> plot(result_PAFit, stats_3, plot = "f",

+ cex = 3, cex.axis = 2, cex.lab = 2)

Concerning the estimated values, while s is slightly over-estimated by ŝ = 18.75, α̂ = 0.52±
0.01 is a good estimate of α. We can also plot the estimated fitnesses versus the true fitnesses
as in Figure 4c with the following code:

R> plot(result_PAFit, stats_3, true_f = sim_net_3$fitness, plot = "true_f",

+ cex = 3, cex.axis = 2, cex.lab = 2)



18 PAFit: Non-Parametric Estimation of Preferential Attachment and Node Fitness

Degree k

A
tta

ch
m

en
t f

un
ct

io
n

1 10 100

1
10

(a) Estimated attachment func-
tion (α̂ = 0.52± 0.01).

Fitness
D

en
si

ty
0.43 1.00 1.89

0
1

2
3

4

(b) Distribution of estimated
node fitnesses.

True fitness

E
st

im
at

ed
 fi

tn
es

s

0.1 0.2 0.5 1 2

0.
1

0.
2

0.
5

1
2

(c) Estimated and true ηi values.

Figure 4: Joint estimation of the attachment function and node fitnesses from sim_net_3.
The red line in panel a is the true attachment function Ak = k0.5. The true node fitnesses
are sampled from a Gamma distribution with mean 1 and inverse variance s = 10.

Since the mean of η̂i’s is normalized to 1, the over-estimation of s leads to over-estimation
of low-value fitnesses and under-estimation of high-value fitness, as can be seen in the plot
of Figure 4c.

We show how joint estimation improves on estimating either node fitnesses in isolation (Fig-
ures 5a and 5b) or the PA function in isolation (Figure 5c). For estimating node fitnesses in
isolation, two cases are shown: the result when we assume the BB model in which Ak = k
(Figure 5a) and the result when we assume the Caldarelli model in which Ak = 1 (Figure 5b).
In either case, the estimated node fitnesses are visually worse than those of the joint es-
timation in Figure 4c. Similarly, estimating the PA function in isolation apparently led to
overestimation of the PA function in the region of large k. To conclude, estimating either node
fitnesses or the PA function in isolation would likely be worse than the joint estimation, if the
underlying assumptions about the true node fitnesses and the true PA function are wrong.

6. Simulation Study

In this section, we present the results of a simulation study that we conducted to assess the
performance of the joint_estimation function. We assume the functional form Ak = kα for
the attachment function. To cover the spectrum of PA and anti-PA phenomena, we choose
four values for α: −0.5, 0, 0.5, and 1. We sample node fitnesses from a Gamma distribution
with mean 1 and variance 1/s. Three values for s we chose are: 5, 20, and 80. While small
values of s lead to widely varied node fitnesses, large values of s leads to highly concentrated
node fitnesses.

For each combination of α and s, we generated M = 50 networks, and estimated Ak and s for
each network using the joint_estimation function. We then fit the form Âk = kα to Âk in
order to estimate α. We then compared the means of the estimation results of α and s with
the true values. Each simulated network has a total of 1000 nodes, where the initial graph
has 200 nodes and 50 new nodes are added at each time-step for a total of 10 time-steps.
Each new node has 50 new edges.
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Figure 5: Estimation of node fitnesses and the PA function in isolation from sim_net_3. The
red line in panel c is the true attachment function Ak = k0.5. The true node fitnesses are
sampled from a Gamma distribution with mean 1 and inverse variance s = 10.

The results are shown in Figure 6. The attachment exponent α was estimated reasonably well
across all combinations of α and s. Except for the cases in which the attachment function
grows fast (α = 1) or the case in which node fitnesses have high variance (s = 5), the estimated
values of s were also acceptable. The case of s = 5 resulted in a slight over-estimation, which
is perhaps attributable to high node fitnesses variance. We also notice that s was slightly
over-estimated when α = 1, which may be caused by the fast growing rate of the PA function.
One also notices that the intervals of ŝ ± 2 s.d. are much larger than those for α̂. The above
observations imply that it is much harder to estimate s than α.

7. Analysis of a collaboration network between scientists

In this section, we demonstrate the complete work-flow for the joint estimation of Ak and
ηi on a collaboration network between scientists from the field of complex networks. In this
network, nodes represent scientists and an undirected edge exists between them if, and only if,
they have coauthored a paper. The degree of a node represents the number of collaborators
of a scientist, since multiple edges are not considered. The temporal network is stored in
coauthor.net, and the names of the scientists are stored in coauthor.author_id. The
network without timestamps was compiled by Mark Newman from the bibliographies of two
review articles on complex networks (Newman 2006). Paul Sheridan, the second author of
the present work, augmented the dataset with time stamps. More information on the dataset
can be found in the package reference manual.

The first step in the analysis is to convert the edge-list matrix coauthor.net to a PAFit_net

object, and get the summary statistics using the function get_statistics.

R> set.seed(1)

R> true_net <- as.PAFit_net(coauthor.net, type = "undirected")

R> net_stats <- get_statistics(true_net)

R> summary(net_stats)
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Figure 6: Simulation result. For each combination of α and s, we generated 50 networks using
attachment function Ak = kα and a Gamma distribution with mean 1 and inverse variance s
for node fitnesses. Each red point indicates the average of the esimated α and the selected
s over 100 simulations for the corresponding combination of α and s. At each red point,
the horizontal/verticalcal bar indicates the interval of the estimated α/selected s ± 2 s.d.,
respectively.

Contains summary statistics for the temporal network.

Type of network: undirected

Number of nodes in the final network: 1498

Number of edges in the final network: 5698

Number of new nodes: 1358

Number of new edges: 1255

Number of time-steps: 145

Maximum degree: 37
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Number of bins: 38

The temporal network grew in 145 time-steps from an initial network at September 2000, to
a final state at September 2007. The resolution of those time-steps is monthly. The final
network has 1498 scientists with 5698 collaborations among them. One can plot the degree
distribution of the final snapshot as follows:

R> plot(true_net,plot = "degree")

This will produce the plot of Figure 7.
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Figure 7: Degree distribution of the final snapshot of the collaboration network.

Before any estimation of the PA function and node fitnesses is carried out, one can test
whether the linear PA-only case is consistent with the observed degree distribution of the
collaboration network:

R> test_linear_PA_result <- test_linear_PA(net_stats$final_deg)

R> print(test_linear_PA_result)

This will generate Table 5. In this case, since the Yule and Waring distributions are not the
best models, one can conclude that the linear PA-only case is inconsistent with the observed
degree vector.
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Model Log-likelihood AIC BIC

nb -2415.08 4840.16 4866.72
pois -2468.63 4945.27 4966.51
waring -2557.49 5124.99 5151.55
geom -2898.64 5811.27 5848.45
yule -2959.97 5929.95 5956.51

Table 5: The result of applying the function test_linear_PA to the observed degree vector
of the collaboration network. This function calculates the AIC and BIC of five models: Yule
(yule), Waring (waring), Poisson (pois), geometric (geom), and negative binomial (nb) when
fitting them to the observed degree vector.

To further investigate the PA function and node fitnesses, we invoke the joint_estimate

function for joint estimation:

R> full_result <- joint_estimate(true_net, net_stats)

R> summary(full_result)

Estimation results by the PAFit method.

Mode: Both the attachment function and node fitness were estimated.

Selected r parameter: 10

Selected s parameter: 45

Estimated attachment exponent: 0.9951764

Attachment exponent ± 2 s.d.: (0.9715202,1.018833)

-------------------------------------------

Additional information:

Number of bins: 38

Number of iterations: 607

Stopping condition: 0.00000001

We can visualize the estimated attachment function and the distribution of estimated node
fitnesses by:

R> plot(full_result, net_stats, line = "TRUE",

+ cex = 2, cex.axis = 1.5, min_A = 1, max_A = 1000, cex.lab = 1.5)

R> plot(full_result, net_stats, plot = "f",

+ cex = 2, cex.axis = 1.5, cex.lab = 1.5)

This snippet will sequentially generate the plots of Figures 8a and 8b. When other options
are set at their default values, the option line = "TRUE" will plot the function Âk = kα̂,
which is a straight line on a double logarithmic scale.

The best fit model when we performed joint estimation is close to the BB model. In Figure 8a,
the estimated Ak is an increasing function with α̂ = 1.00 ± 0.05. We take this as evidence
in favor of the presence of linear PA in the collaboration network. Let us take a concrete
example: a network scientist with twenty collaborators has roughly twice the chance to get a
new collaborator compared with someone who only has ten collaborators, assuming they have
the same fitness. For comparison’s sake, we also plot the estimation results of Ak in isolation
using Jeong’s method, Newman’s method, and PAFit in Figures 8c, 8d, and 8e, respectively:
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(a) Estimated Ak with joint estimation by PAFit
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(c) Jeong’s method
(α̂ = 0.77± 0.80).
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(d) Newman’s method
(α̂ = 1.39± 0.56).
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(e) PAFit
(α̂ = 1.05± 0.07).

Figure 8: Estimation of the attachment function and node fitnesses for the network scientist
collaboration network. Panels a and b show the joint estimation result, while panels c, d, and
e show the results when we estimated the PA function in isolation.

R> result_Jeong <- Jeong(true_net, net_stats)

R> result_Newman <- Newman(true_net, net_stats)

R> result_onlyA <- only_A_estimate(true_net, net_stats)

R> plot(result_Jeong, net_stats, line = "TRUE", min_A = 1, max_A = 1000,

+ cex = 3, cex.axis = 2, cex.lab = 2)

R> plot(result_Newman, net_stats, line = "TRUE", min_A = 1, max_A = 1000,

+ cex = 3, cex.axis = 2, cex.lab = 2)

R> plot(result_onlyA, net_stats, line = "TRUE", min_A = 1, max_A = 1000,

+ cex = 3, cex.axis = 2, cex.lab = 2)

The options min_A = 1 and max_A = 1000 specify the range of the vertical axis and are
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needed for making the plots comparable.

The high variance of α̂ from either Jeong’s method or Newman’s method would render qual-
itative assessments of the PA function inconclusive, if one relied only on those methods: one
could not confidently ascertain whether the PA function is sub-linear, linear, or super-linear
in nature. We notice that the estimated Ak obtained from the joint estimation resembles that
of Figure 8e, when we estimate it in isolation. The reason is that estimated node fitnesses in
Figure 8b are highly concentrated around the mean. Thus their distribution is not very far
from the case when all the fitnesses are 1. Nevertheless, we observe that the estimated Ak
from the joint estimation is reduced when compared with that of Figure 8e. This is expected
since in the joint estimation, a portion of the connection probability in Equation 1 is explained
by node fitness.

Although the distribution in the plot of Figure 8b is concentrated around its mean, we notice
that its right tail is rather long, which is a sign that this tail contains interesting information.
We can extract the information from this region by finding the topmost ‘fittest’ network
scientists. This can be done as follows:

R> sorted_fit <- sort(full_result$estimate_result$f, decreasing = TRUE)

R> top_scientist <- coauthor.author_id[names(sorted_fit), ]

R> print(cbind(sorted_fit[1:10], top_scientist[1:10, 2]))

This snippet will produce the results show in Table 6. The table shows the ten network
scientists that we found to have the highest ability to attract new collaborators from the field.
Anyone acquainted with the field will recognized a number of familiar faces. For example, at

Rank Estimated fitness Name

1 1.42 BARABASI, A
2 1.35 NEWMAN, M
3 1.26 JEONG, H
4 1.25 LATORA, V
5 1.24 ALON, U
6 1.23 OLTVAI, Z
7 1.23 YOUNG, M
8 1.22 WANG, B
9 1.21 SOLE, R
10 1.21 BOCCALETTI, S

Table 6: Ten topmost ‘fittest’ network scientists in the field of complex networks.

the top of the list is none other than Albert-László Barabási, who introduced the BA model.
Number two and number three are Mark Newman and Hawoong Jeong, who respectively are
the authors of the eponymously named Newman’s method and Jeong’s method.

8. Conclusion

We introduced the R package PAFit, which provides a comprehensive framework for the
non-parametric estimation of PA and node fitness mechanisms in the growth of temporal
complex networks. In summary, PAFit implements functions to simulate various temporal
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network models based on these two mechanisms, gathers summary statistics from real-world
temporal network datasets, and estimates non-parametrically the attachment function and
node fitnesses. We provided a number of simulated examples, as well as a complete analysis
of a real-world collaboration network.
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