Package ‘OpenMx’

November 27, 2023

Encoding UTF-8
Date 2023-11-27
Title Extended Structural Equation Modelling

URL http://openmx.ssri.psu.edu, https://github.com/OpenMx/0OpenMx

BugReports http://openmx.ssri.psu.edu/forums

Description Create structural equation models that can be manipulated programmatically.
Models may be specified with matrices or paths (LISREL or RAM)
Example models include confirmatory factor, multiple group, mixture
distribution, categorical threshold, modern test theory, differential
Fit functions include full information maximum likelihood, maximum likeli-
hood, and weighted least squares.
equations, state space, and many others.
Support and advanced package binaries available at <http://openmx.ssri.psu.edu>.
The software is described in Neale, Hunter, Pritikin, Zahery, Brick,
Kirkpatrick, Estabrook, Bates, Maes, & Boker (2016) <doi:10.1007/s11336-014-9435-8>.

SystemRequirements GNU make, C++17

ByteCompile yes

Language en-US

License Apache License (== 2.0)

LinkingTo Rcpp, ReppEigen (>=0.3.3.9.4), ReppParallel, StanHeaders (>=2.10.0.2), BH (>= 1.69.0-
1), rpf (>= 0.45), Matrix

Imports digest,
MASS,
Matrix (>= 1.2-16),
methods,
Repp, ReppParallel,
parallel, lifecycle

Depends R (>=3.5.0)

Suggests mvtnorm,
numDeriv,
roxygen2 (>=6.1),

http://openmx.ssri.psu.edu
https://github.com/OpenMx/OpenMx
http://openmx.ssri.psu.edu/forums
http://openmx.ssri.psu.edu
https://doi.org/10.1007/s11336-014-9435-8

rpf (>= 0.45),
snowfall,
Ime4,

covr,
testthat,
umx,
ifaTools,
knitr,
markdown,
rmarkdown,
reshape?2,

ggplot2
VignetteBuilder knitr

LazyLoad yes
LazyData yes
Collate '0ClassUnion.R’

'cache.R'
'MxBaseNamed.R'
'MxData.R'
'MxDataWLS.R'
'DefinitionVars.R'
'MxReservedNames.R'
'MxNamespace.R'
'‘MxSearchReplace.R'
'MxFlatSearchReplace.R'
'MxUntitled.R'
'MxAlgebraFunctions.R'
'MxExponential.R'
'MxMatrix.R'
'DiagMatrix.R'
'FullMatrix.R'
'TdenMatrix.R'
LowerMatrix.R'
'SdiagMatrix.R'
'StandMatrix.R'
'SymmMatrix.R'
"UnitMatrix.R'
'"ZeroMatrix.R'
'MxMatrixFunctions.R'
'MxAlgebra.R'
'MxCycleDetection.R'
'MxDependencies.R'
‘MxAlgebraConvert.R'
'MxSquareBracket.R'
'MxEval.R'
'MxRename.R'
'MxPath.R'

'MxObjectiveMetaData.R'
'MxExpectation.R'
'MxExpectationNormal.R'
'MxExpectationRAM.R'
'MxExpectationLISREL.R'
'MxFitFunction.R'
'MxFitFunctionAlgebra.R'
'MxFitFunctionML.R'
'MxFitFunctionMultigroup.R'
'MxFitFunctionRow.R'
'MxFitFunctionWLS.R'
'MxRAMObjective.R'
'MxLISRELODbjective.R'
'MxFIMLObjective.R'
'MxMLObjective.R'
'MxRowObjective.R'
'MxAlgebraObjective.R'
'MxBounds.R'
'MxConstraint.R'
'MxInterval.R'
'MxTypes.R'
'MxCompute.R'
‘MxModel.R'
'MxRAMModel.R'
'MxLISRELModel.R'
'MxModelDisplay.R'
'MxFlatModel.R'
'MxMultiModel.R'
'MxModelFunctions.R'
'MxModelParameters.R'
'MxUnitTesting.R'
‘MxApply.R'

'MxRun.R'
'MxRunHelperFunctions.R'
‘MxSummary.R'
'MxCompare.R'
‘MxSwift.R'
‘MxOptions.R'
‘MxThreshold.R'
'OriginalMx.R'
'MxGraph.R'
'MxGraphviz.R'
'MxDeparse.R'
'MxCommunication.R'
'MxRestore.R'
'MxVersion.R'
'MxPPML.R'
'MxRAMtoML.R'

4 R topics documented:

'MxErrorHandling.R'
'MxDetectCores.R'
'MxSaturatedModel.R'
'omxBrownie.R'
'omxConstrainThresholds.R'
'omxGetNPSOL.R'
'MxFitFunctionR.R'
'MxRObjective.R'
'MxExpectationHiddenMarkov.R'
'MxExpectationMixture.R'
'MxExpectationStateSpace.R'
'MxExpectationBA81.R'
'MxFitFunctionGREML.R'
'MxExpectationGREML.R'
'MxMILR'
'MxFactorScores.R'
'MxRobustSE.R'
'MxAvailableOptimizers.R'
'MxTryHard.R'

'MxSE.R'

'MxAutoStart.R'
'MxRetro.R'

‘MxPenalty.R'

'MxMMLR'
'omxReadGRMBin.R'
'MxPredict.R'

'zzz.R’

RdMacros lifecycle
Biarch true
Version 2.21.11
RoxygenNote 7.2.3

R topics documented:

as.statusCode L e e 11
BaseCompute-class e e 12
Bollen e 13
CVECLOTIZE . . . o v v v e o e e e e e e e e e e e e e e e e e e e 14
demoOneFactor e 14
demoTwoFactor e e 15
diag2vec 16
DiscreteBase-class e e e 17
dzfData e e e e 17
dzmData e e 19
dzoData e e e e e e e 20

CIZENVEC . .« v v vt e e e e 22

R topics documented: 5

examplel L e e e 23
example2 e 24
10§ 0] 1 25
factorExamplel 25
factorScaleExamplel L 26
factorScaleExample2 Lo 27
genericFitDependencies,MxBaseFitFunction-method 28
HS.ability.data. 29
imxAddDependency 31
imxAutoOptionValue 31
imxCheckMatrices e e e e e e e e 32
imxCheckVariables e e 32
imxConDecMatrixSIots 33
imxConstraintRelations 33
imxConvertldentifier e 33
imxConvertLabel e 34
imxConvertSubstitution 34
imxCreateMatriX e e e e e e e e e e e e e e 35
imxDataTypes o e e e 36
imxDefaultGetSlotDisplayNames 36
IMXDEPArse o o e e e e e e 37
imxDependentModels 37
imxDetermineDefaultOptimizer, . 37
IMXDmMVvNorm e e e e e e e 38
imxEvalByName e 38
imxExtractMethod 39
imxExtractNames e 39
imxExtractReferences 39
imxExtractSlot e e e 40
imxFlattenModel 40
imxFreezeModel e 41
imxGenerateLabels e 41
imxGenerateNamespaceot e e 41
imxGenericModelBuilder 42
imxGenSwift L. e e 42
imxGentleResize e e e 43
imxGetNumThreads 43
imxGetSlotDisplayNames 44
imxHasConstraint e e e e e e e e e e 44
imxHasDefinitionVariable 45
imxHasNPSOL e 45
imxHasOpenMP e 45
imxHasThresholds e 46
imxHasWLS e 46
imxIdentifier e e e 46
imxIndependentModels 47
imxInitModel 47

imxIsDefinitionVariable 47

R topics documented:

imxIsMultilevel L 48
imxIsPath e 48
imxIsStateSpace 48
imxLocateFunction L 49
imxLocateIndex 49
imxLocateLabel 50
IMXLOZ . . . o e 50
imxLookupSymbolTable 50
imxModelBuilder e 51
imxModelTypes 52
IMXMpIWrap e e 52
imxOriginalMX e e 52
imxPenaltyTypes e 53
IMXPPMLo 54
imxPPML.Test.Battery e 54
imxPPML.Test.Test 55
imxPreprocessModel 56
imxReplaceMethod 56
imxReplaceModels 56
imxReplaceSlot 57
imxReportProgress 57
imxReservedNames L 58
imxReverseldentifier 58
imxRobustSE 59
imxRowGradients 60
imxSameType e 60
imxSeparatorChar 61
imxSfClient 61
imxSimpleRAMPredicate 61
imxSparselnvert 62
imxSquareMatrixX e e e e 62
imxSymmetricMatriX e e e e e 62
imxTypeName e 63
imxUntitledName 63
imxUntitledNumber 63
imxUntitledNumberReset L 64
imxUpdateModelValues Lo 64
imxVariableTypes 65
imxVerifyMatriX e e e e e 65
imxVerifyModel 65
imxVerifyName 66
imxVerifyReference 66
imxWIsChiSquare e 67
imxWIsStandardErrors 68
jointdata 69
latentMultipleRegExamplel 70
latentMultipleRegExample2 Lo 71

lazarsfeld e 72

R topics documented: 7

logm e e e 73
LongitudinalOverdispersedCounts 73
multiDatal 74
mxAlgebra 75
MxAlgebra-class e e e 80
MxAlgebraFormula-class L 81
mxAlgebraFromString 81
mxAlgebraObjective e 82
MXAULOSTArt e e e e e 83
mxAvailableOptimizers e 85
MxBaseExpectation-class 85
MxBaseFitFunction-class o 86
MxBaseNamed-class 86
MxBaseObjectiveMetaData-class L o 86
mxBootstrap e e e e 87
mxBootstrapEval 89
mxBootstrapStdizeRAMpaths oL 91
mxBounds 93
MxBounds-class e 95
MxCharOrList-class 95
MxCharOrLogical-class e 96
MxCharOrNumber-class e 96
mxCheckldentification 96
mxCL . . e 98
MXCI-class o e e 101
MXCOMPATE o v vt et e e e e e e e e e e e e e e e e 102
MxCompare-class 106
MxCompute-class e 106
mxComputeBootstrap e e 107
mxComputeCheckpoint 108
mxComputeConfidencelnterval L oo 109
mxComputeDefault 110
mxComputeEM L 111
mxComputeGenerateData L 113
mxComputeGradientDescent L 113
mxComputeHessianQuality L 115
mxComputelterate L L 116
mxComputeJacobian e 116
mxComputeLoadContext e e 117
mxComputeLoadData 118
mxComputeLoadMatrix 120
mxComputeLoop e e e 121
mxComputeNelderMead e 122
mxComputeNewtonRaphson L o 126
mxComputeNothing 127
mxComputeNumericDeriv 128
mxComputeOnce 129

mxComputePenaltySearch 130

R topics documented:

mxComputeReportDeriv 131
mxComputeReportExpectation Lo oL 132
mxComputeSequeNCe e e e e e e e e e e 132
mxComputeSetOriginalStarts L 133
mxComputeSimAnnealing L 133
mxComputeStandardError00 0oL 135
mxComputeTryCatch 135
mxComputeTryHard 136
mxConstraint L. oL e e e e e e 137
MxConstraint-class 139
mxData e 141
MxData-class e 145
mxDataDynamic L 146
MxDataStatic-class 147
mxDataWLS e 147
mxDescribeDataWLS 149
MxDirectedGraph-class 150
mxEval . .. e 151
mxEvaluateOnGrid L 152
MxExpectation-class L 153
mxExpectationBA8L 154
mxExpectationGREML 157
MxExpectationGREML-class 159
mxExpectationHiddenMarkov oL oo 161
mxExpectationLISREL 163
mxExpectationMixture L 168
mxExpectationNormal 170
mxExpectationRAM 172
mxExpectationStateSpace Lo 175
mxExpectationStateSpaceContinuousTime 180
mxFactor 186
mxFactorScores e 188
mxFIMLObjective e 190
MxFitFunction-class 192
mxFitFunctionAlgebra L 193
mxFitFunctionGREML 195
MxFitFunctionGREML-class L 197
mxFitFunctionML o 198
mxFitFunctionMultigroup 201
mxFitFunctionR L 204
mxFitFunctionRowo 205
mxFitFunctionWLSo 207
MxFlatModel-class L e 210
mxGenerateData L 211
mxGetExpected 214
mxGREMLDataHandler 216
MxlInterval-class L e 218

mxJiggleo 218

R topics documented: 9

mxKalmanScores 220
MxLISRELModel-class 222
mxLISRELObjective e 222
MxListOrNull-class o 226
mxMakeNames e 226
mxMarginalNegativeBinomial o L oL, 227
mxMarginalPoisson 228
mMXMatrix e e e e 229
MxMatrix-class e e e e 232
mxMI . . e e 234
mxMLObjective e 236
mxModel e 238
MxModel-class 241
mxModelAverage e e 244
mxNormalQuantiles e e e 248
mxOPON e 249
MxOptionalChar-class 253
MxOptionalCharOrNumber-class, 253
MxOptionalDataFrame-class e 253
MxOptionalDataFrameOrMatrix-class 253
MxOptionallnteger-class e 253
MxOptionalLogical-class e 254
MxOptionalMatrix-class 254
MxOptionalNumeric-class L 254
mxParametricBootstrap L 254
mxPath 256
mxPearsonSelCov oL 259
mxPenalty 261
MxPenalty-class e e 262
mxPenaltyElasticNet 262
mxPenaltyLASSO oL 263
mxPenaltyRidge 264
mxPenaltySearch L 265
mxPenaltyZap e 266
mxPowerSearch 266
MxRAMGraph-class e 270
MxRAMModel-class e 270
MXRAMODbjective e 271
mxRename e 273
mxRestore 274
mxRetro L 276
mxRObjective L 277
mxRowObjective L 278
mxRun. 280
MXSAVE . . oo et e e e e e e e e e 283
MXSE . . e 284
mxSetDefaultOptions L 286

mxSimplify2Array L e 287

10

R topics documented:

mxStandardizeRAMpaths 287
mxThreshold 290
mxTryHard 292
MXTYPES . . . o o o 296
MXVETSION o oo e e e e e e 296
MxVersionType-class L 297
myAutoregressiveData L. 297
myFADataRaw 298
myGrowthKnownClassData 299
myGrowthMixtureData 300
myLongitudinalData 301
myRegData 302
myRegDataRaw L 303
myTwinData. L e 304
mzfData e 305
mzmData e 306
Named-entity e e 308
nhanesDemo L 308
nuclear_twin_design_data 309
numHess1 L 310
numHess2o 310
omxAlllnt 311
OomXAPPLy e 313
omxAssignFirstParameters oL 313
omxAugmentDataWithWLSSummary 314
omxBrownie. 315
omxBuildAutoStartModel 317
omxCheckCloseEnough 317
omxCheckEquals e 318
omxCheckError 319
omxCheckldentical L 320
omxCheckNamespace i i e e 321
omxCheckSetEquals L 321
omxCheckTrue e 322
omxCheckWarning L 323
omxCheckWithinPercentError 0oL 324
omxConstrainMLThresholds 325
omxDefaultComputePlan oL 325
omxDetectCores e 326
omxGetBootstrapReplications o Lo 327
omxGetNPSOL o e 327
omxGetParameters Lo 328
omxGetRAMDepth 330
omxGraphviz 330
omxHasDefaultComputePlan, 331
omxLapply e e 331
omxLocateParameters 332

omxLogical 333

as.statusCode 11

omxManifestModelByParameterJacobian, 334
omxMatrixOperations e e e e e 335
omXMNOT e e e e e e e e e e e 335
omxModelDeleteData e 337
omxNameAnonymousParameters L. 337
omxParallelCL e e 338
omxQUOLES e e e e e e e e e e e 340
omxRAMtOML e 340
omxReadGRMBIn e 341
omxRMSEA e 342
omxSapply 343
omxSaturatedModel L 344
omxSelectRowsAndCols 347
omxSetParameters L. L e e e e e e e e e e e e 348
omxSymbolTable 349
OpenMX L e 349
ordinalTwinData e 351
Oscillator e e 352
predict MxModel 353
TVECLOTIZE . . o v v o e 354
summary.MxModel 354
5 358
twinData 359
twin_NA_dot e 360
vec2diag o e e e e 362
VeCh . . . e e e 362
vech2full L 363
vechs . . . e 364
vechs2full e 365
Index 366
as.statusCode Convert a numeric or character vector into an optimizer status code
factor
Description

Below we provide a brief, technical description of each status code followed by a more colloquial,
less precise desciption.

* 0,°0OK’: Optimization succeeded. Everything seems fine.

* 1,°0OK/green’: Optimization succeeded, but the sequence of iterates has not yet converged (Mx

status GREEN). This condition is only detected by NPSOL. The solution is likely okay. You
might want to re-run the model from its final esimates to resolve this.

¢ 2,‘infeasible linear constraint’: The linear constraints and bounds could not be satisfied. The

problem has no feasible solution. Right now, it should not be possible obtain this status code,
so call Ripley’s.

12

Usage

BaseCompute-class

3,‘infeasible non-linear constraint’: The nonlinear constraints and bounds could not be satis-
fied. The problem may have no feasible solution. Sometimes this happens when your starting
values do not satisfy the constraints. Also, optimization could not satisfy the constraints and
get a better fit.

4,‘iteration limit’: Optimization was stopped prematurely because the iteration limit was
reached (Mx status BLUE). You might want to rerun: m1 = mxRun(m1) or increase the iter-
ation limit (see mxOption). The optimizer took all the steps it could and did not finish. You
can increase the number of steps or get better starting values.

5,‘not convex’: The Hessian at the solution does not appear to be convex (Mx status RED).
There may be more than one solution to the model. See mxCheckIdentification. I would
not trust this solution; it does not appear to be a good one. Perhaps, try mxTryHard.

6,‘nonzero gradient’: The model does not satisfy the first-order optimality conditions to the
required accuracy, and no improved point for the merit function could be found during the
final linesearch (Mx status RED). I would not trust this solution; it does not appear to be a
good one. To search nearby, see mxTryHard.

7,‘bad deriv’: You have provided analytic derivatives. However, your provided derivatives
differ too much from numerically approximated derivatives. Double check your math.
9,‘internal error’: An input parameter was invalid. The most likely cause is a bug in the code.
Please report occurrences to the OpenMx developers.

10, ‘infeasible start’: Starting values were infeasible. Modify the start values for one or more
parameters. For instance, set means to their measured value, or set variances and covariances
to plausible values. See mxAutoStart and mxTryHard.

as.statusCode(code)

Arguments

code

See Also

a character or numeric vector of optimizer status code

mxBootstrap summary.MxModel

BaseCompute-class BaseCompute

Description

This is an internal class and should not be used directly.

See Also

mxComputeEM, mxComputeGradientDescent, mxComputeHessianQuality, mxComputelterate, mx-
ComputeNewtonRaphson, mxComputeNumericDeriv

Bollen 13

Bollen Bollen Data on Industrialization and Political Democracy

Description

Data set used in some of OpenMx’s examples, for instance WLS. The data were reported in Bollen
(1989, p. 428, Table 9.4) This set includes data from 75 developing countries each assessed on four
measures of democracy measured twice (1960 and 1965), and three measures of industrialization
measured once (1960).

Usage

data("Bollen")

Format
A data frame with 75 observations on the following 11 numeric variables.

y1 Freedom of the press, 1960

y2 Freedom of political opposition, 1960
y3 Fairness of elections, 1960

y4 Effectiveness of elected legislature, 1960
y5 Freedom of the press, 1965

y6 Freedom of political opposition, 1965

y7 Fairness of elections, 1965

y8 Effectiveness of elected legislature, 1965
x1 GNP per capita, 1960

x2 Energy consumption per capita, 1960

x3 Percentage of labor force in industry, 1960

Details
Variables y1-y4 and y5-y8 are typically used as indicators of the latent trait of “political democracy”
in 1960 and 1965 respectively. x1-x3 are used as indicators of industrialization (1960).

Source

The sem package (in turn, via personal communication Bollen to Fox)

References

Bollen, K. A. (1979). Political democracy and the timing of development. American Sociological
Review, 44, 572-587.

Bollen, K. A. (1980). Issues in the comparative measurement of political democracy. American
Sociological Review, 45, 370-390.

Bollen, K. A. (1989). Structural equation models. New York: Wiley-Interscience.

14

Examples

data(Bollen)
str(Bollen)
plot(yl ~ y2, data = Bollen)

demoOneFactor

cvectorize Vectorize By Column

Description

This function returns the vectorization of an input matrix in a column by column traversal of the

matrix. The output is returned as a column vector.

Usage

cvectorize(x)

Arguments

X an input matrix.

See Also

rvectorize, vech, vechs

Examples

cvectorize(matrix(1:9, 3, 3))
cvectorize(matrix(1:12, 3, 4))

demoOneFactor Demonstration data for a one factor model

Description

Data set used in some of OpenMx’s examples.

Usage

data("demoOneFactor")

demoTwoFactor 15

Format

A data frame with 500 observations on the following 5 numeric variables.

x1
X2
x3
x4
X5

Details
Variables x1-x5 are typically used as indicators of the latent trait.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(demoOneFactor)
cov (demoOneFactor)
cor (demoOneFactor)

demoTwoFactor Demonstration data for a two factor model

Description

Data set used in some of OpenMx’s examples.

Usage

data("demoTwoFactor”)

Format

A data frame with 500 observations on the following 10 numeric variables.
x1
X2
x3
x4

https://openmx.ssri.psu.edu/documentation/

16 diag2vec

x5
y1
y2
y3
v4
y5

Details
Variables x1-x5 are typically used as indicators of one latent trait. Variables yl-y5 are typically
used as indicators of another latent trait.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(demoTwoFactor)
cov(demoTwoFactor)
cor (demoTwoFactor)

diag2vec Extract Diagonal of a Matrix

Description

Given an input matrix, diag2vec returns a column vector of the elements along the diagonal.

Usage

diag2vec(x)

Arguments

X an input matrix.

Details

Similar to the function diag, except that the input argument is always treated as a matrix (i.e.,
it doesn’t have diag()’s functions of returning an Identity matrix from an nrow specification, nor
to return a matrix wrapped around a diagonal if provided with a vector). To get vector2matrix
functionality, call vec2diag.

https://openmx.ssri.psu.edu/documentation/

DiscreteBase-class

See Also

vec2diag

Examples

diag2vec(matrix(1:9, nrow=3))
[,11

diag2vec(matrix(1:12, nrow=3, ncol=4))
[,11

17

DiscreteBase-class An 84 base class for discrete marginal distributions

Description

An S4 base class for discrete marginal distributions

See Also

mxMarginalPoisson, mxMarginalNegativeBinomial

dzfData Example twin extended kinship data: DZ female data

Description

Data for extended twin example ETC88.R

Usage

data("dzfData")

18

Format

A data frame with 2007 observations on the following 37 variables.

famid a numeric vector

el
e2
e3
e4
e5
e6
e7
e8
e9
elo
ell
el12
el3
el4
el15
el6
el7
el8
al
a2
a3
a4
ab
ab
a7
a8
ad
ale
all
al2
al3
al4
als
aleé
al7
al8

a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector

a numeric vector

dzfData

dzmData

Examples

data(dzfData)
str(dzfData)

19

dzmData

Example twin extended kinship data: DZ Male data

Description

Data for extended twin example ETC88.R

Usage
dat

Format

a("dzmData")

A data frame with 1990 observations on the following 37 variables.

famid a numeric vector

el
e2
e3
e4
e5
e6
e’
e8
e9
elo
ell
el2
el3
el4
el5
el6
el7
el8
al
a2
a3

a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector

a numeric vector

20

a4
a5
a6
a7
a8
ad
alo
all
al2
al3
al4
als
ale
al7
al8

a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector

a numeric vector

Examples

data(dzmData)
str(dzmData)

dzoData

dzoData

Example twin extended kinship data: DZ opposite sex twins

Description

Data for extended twin example ETC88.R

Usage

data("dzoData")

Format

A data frame with 3981 observations on the following 37 variables.

famid a numeric vector

el
e2
e3
e4
e5

a numeric vector
a numeric vector
a numeric vector
a numeric vector

a numeric vector

dzoData

e6
e7
e8
e9
elo
ell
el2
el3
el4
el5
el6
el7
el8
al
a2
a3
a4
ab
a6
a7
a8
a9
alo
all
al2
al3
al4
als
al6
al7
al8

a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector
a numeric vector

a numeric vector

Examples

data(dzoData)
str(dzoData)

21

22 eigenvec

eigenvec Eigenvector/Eigenvalue Decomposition

Description

eigenval computes the real parts of the eigenvalues of a square matrix. eigenvec computes the
real parts of the eigenvectors of a square matrix. ieigenval computes the imaginary parts of the
eigenvalues of a square matrix. ieigenvec computes the imaginary parts of the eigenvectors of
a square matrix. eigenval and ieigenval return nx1 matrices containing the real or imaginary
parts of the eigenvalues, sorted in decreasing order of the modulus of the complex eigenvalue.
For eigenvalues without an imaginary part, this is equivalent to sorting in decreasing order of the
absolute value of the eigenvalue. (See Mod for more info.) eigenvec and ieigenvec return nxn
matrices, where each column corresponds to an eigenvector. These are sorted in decreasing order
of the modulus of their associated complex eigenvalue.

Usage

eigenval (x)
eigenvec(x)
ieigenval (x)
ieigenvec(x)

Arguments

X the square matrix whose eigenvalues/vectors are to be calculated.

Details

Eigenvectors returned by eigenvec and ieigenvec are normalized to unit length.

See Also
eigen

Examples
A <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name = 'A")
G <- mxMatrix(values = c(@, -1, 1, -1), nrow=2, ncol=2, name='G"')

model <- mxModel(A, G, name = 'model')

mxEval (eigenvec(A), model)
mxEval (eigenvec(G), model)
mxEval (eigenval(A), model)
mxEval(eigenval(G), model)
mxEval(ieigenvec(A), model)
mxEval(ieigenvec(G), model)
mxEval (ieigenval (A), model)
mxEval(ieigenval (G), model)

examplel

23

examplel Bivariate twin data, wide-format from Classic Mx Manual

Description

Data set used in some of OpenMx’s examples.

Usage

data("examplel")

Format
A data frame with 400 observations on the following variables.
IDNum Twin pair ID
Zygosity Zygosity of the twin pair
X1 X variable for twin 1
Y1 Y variable for twin 1

X2 X variable for twin 2

Y2 Y variable for twin 2

Details

Same as example2 but in wide format instead of tall.

Source

Classic Mx Manual.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(examplel)
plot(X2 ~ X1, data = examplel)

https://openmx.ssri.psu.edu/documentation/

24

example?2

example2 Bivariate twin data, long-format from Classic Mx Manual

Description

Data set used in some of OpenMx’s examples.

Usage

data("example2”)

Format
A data frame with 800 observations on the following variables.
IDNum ID number
TwinNum Twin ID number
Zygosity Zygosity of the twin
X X variable for twins 1 and 2

Y Y variable for twins 1 and 2

Details

Same as examplel but in tall format instead of wide.

Source

Classic Mx Manual.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation.

Examples

data(example2)
plot(Y ~ X, data = example2)

expm

25

expm Matrix exponential

Description

Matrix exponential

Usage

expm(x)

Arguments

X matrix

factorExamplel Example Factor Analysis Data

Description

Data set used in some of OpenMx’s examples.

Usage

data("factorExamplel1")

Format
A data frame with 500 observations on the following variables.

x1
X2
X3
x4
x5
X6
x7
x8
x9

Details

This appears to be a three factor model, but perhaps with an odd loading structure.

26 factorScaleExamplel

Source

Simulated

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(factorExamplel)
round(cor (factorExamplel), 2)

factanal (covmat=cov(factorExamplel), factors=3, rotation="promax")

factorScaleExample1 Example Factor Analysis Data for Scaling the Model

Description

Data set used in some of OpenMx’s examples.

Usage

data("factorScaleExamplel")

Format

A data frame with 200 observations on the following variables.

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12

https://openmx.ssri.psu.edu/documentation/

factorScaleExample2 27

Details
This appears to be a three factor model with factor 1 loading on X1-X4, factor 2 on X5-X8, and
factor 3 on X9-X12.

Source

Simulated

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(factorScaleExamplel)
round(cor(factorScaleExamplel), 2)

factorScaleExample2 Example Factor Analysis Data for Scaling the Model

Description

Data set used in some of OpenMx’s examples.

Usage

data("factorScaleExample2")

Format
A data frame with 200 observations on the following variables.

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12

https://openmx.ssri.psu.edu/documentation/

28 genericFitDependencies,MxBaseFitFunction-method

Details
Three-factor data with factor 1 loading on X1-X4, factor 2 on X5-X8, and factor 3 on X9-X12. It
differs from factorScaleExamplel in the scaling of the variables.

Source

Simulated

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(factorScaleExample2)
round(cor (factorScaleExample2), 2)

data(factorScaleExample2)
plot(sapply(factorScaleExamplel, var), type='l', ylim=c(@, 6), lwd=3)
lines(1:12, sapply(factorScaleExample2, var), col='blue', 1lwd=3)

genericFitDependencies,MxBaseFitFunction-method
Add dependencies

Description

If there is an expectation, then the fitfunction should always depend on it. Hence, subclasses that
implement this method must ignore the passed-in dependencies and use "dependencies <- call-
NextMethod()" instead.

Usage

S4 method for signature 'MxBaseFitFunction'
genericFitDependencies(.0Object, flatModel, dependencies)

Arguments
.Object fit function object
flatModel flat model that lives with .Object

dependencies accumulated dependency relationships

https://openmx.ssri.psu.edu/documentation/

HS.ability.data 29

HS.ability.data Holzinger & Swineford (1939) Ability in 301 children from 2 schools

Description
This classic data set contains of intelligence-test scores from 301 children on 26 tests of cognitive
ability.

The tests cover mental speed, memory, mathematical-ability, spatial, and verbal ability as listed
below.

The data are also available in the MBESS package.

Usage

data("HS.ability.data")

Format
A data frame comprising 301 observations on 22 variables:

id student ID number (int)

Gender Sex (Factor w/ 2 levels “Female” and ‘“Male”)

grade Grade in school (integer 7 or 8)

agey Age in years (integer)

agem Age in months (integer)

school School attended (Factor w/2 levels “Grant-White” and “Pasteur”)
addition A speed test of addition (numeric)

code A speed test (numeric)

counting A speed test of counting groups of dots (numeric)

straight A speed test discriminating straight and curved capitals (numeric)
wordr A memory subtest of word recognition

numberr A memory subtest of number recognition

figurer A memory subtest of figure recognition

object A memory subtest: object-number test

numberf A memory subtest: number-figure test

figurew A memory subtest: figure-word test

deduct A mathematical subtest of deduction

numeric A mathematical subtest of numerical puzzles

problemr A mathematical subtest of problem reasoning

series A mathematical subtest of series completion

arithmet A mathematical subtest: Woody-McCall mixed fundamentals, form I

30 HS.ability.data

visual A spatial subtest of visual perception

cubes A spatial subtest

paper A spatial subtest paper form board

flags A spatial subtest (also known as lozenges)

paperrev A spatial subtest additional paper form board test (can substitute for paper)
flagssub A spatial subtest additional lozenges test (can substitute for flags)

general A verbal subtest of general information

paragrap A verbal subtest of paragraph comprehension

sentence A verbal subtest of sentence completion

wordc A verbal subtest of word classification

wordm A verbal subtest of word meaning

Details

The data are from children who differ in grade (seventh- and eighth-grade) and are nested in one of
two schools (Pasteur and Grant-White). You will see it in use elsewhere, both in R (lavaan, and
MBESS), and in Joreskog (1969) reporting a CFA on the Grant-White school subject subset.

Some tests are alternate or substitute forms, e.g. paperrev (a paper form board test) can substitute
for paper and flagssub for the lozenges test flags.

Source

Holzinger, K., and Swineford, F. (1939).

References

Holzinger, K., and Swineford, F. (1939). A study in factor analysis: The stability of a bifactor
solution. Supplementary Educational Monograph, no. 48. Chicago: University of Chicago Press.

Joreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis.
Psychometrika, 34, 183-202.

Examples

data(HS.ability.data)

str(HS.ability.data)
levels(HS.ability.data$school)

plot(flags ~ flagssub, data = HS.ability.data)

imxAddDependency 31

imxAddDependency Add a dependency

Description

The dependency tracking system ensures that algebra and fitfunctions are not recomputed if their
inputs have not changed. Dependency information is computed prior to handing the model off to
the optimizer to reduce overhead during optimization.

Usage

imxAddDependency (source, sink, dependencies)

Arguments
source a character vector of the names of the computation sources (inputs)
sink the name of the computation sink (output)

dependencies the dependency graph

Details

Each free parameter keeps track of all the objects that store that free parameter and the transitive
closure of all algebras and fit functions that depend on that free parameter. Similarly, each definition
variable keeps track of all the objects that store that free parameter and the transitive closure of all
the algebras and fit functions that depend on that free parameter. At each iteration of the optimiza-
tion, when the free parameter values are updated, all of the dependencies of that free parameter are
marked as dirty (see omxFitFunction.repopulateFun). After an algebra or fit function is com-
puted, omxMarkClean() is called to to indicate that the algebra or fit function is updated. Similarly,
when definition variables are populated in FIML, all of the dependencies of the definition vari-
ables are marked as dirty. Particularly for FIML, the fact that non-definition-variable dependencies
remain clean is a big performance gain.

imxAutoOptionValue imxAutoOptionValue

Description

Convert "Auto" placeholders in global mxOptions to actual default values.

Usage

imxAutoOptionValue(optionName, optionList = options()$mxOption)

32 imxCheck Variables

Arguments
optionName Character string naming the mxOption for which a numeric or integer value is
wanted.
optionList List of options; defaults to list of global mxOptions. imxAutoOptionValue
Details

This is an internal function exported for documentation purposes. Its primary purpose is to convert
the on-load value of "Auto"to valid values for mxOptions ‘Gradient step size’, ‘Gradient iterations’,
and ‘Function precision’—respectively, 1.0e-7, 1L, and le-14.

imxCheckMatrices imxCheckMatrices

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxCheckMatrices(model)

Arguments

model model

imxCheckVariables imxCheckVariables

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxCheckVariables(flatModel, namespace)

Arguments

flatModel flatModel

namespace namespace

imxConDecMatrixSlots

33

imxConDecMatrixSlots Condense/de-condense slots of an MxMatrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConDecMatrixSlots(object)

Arguments

object of class MxMatrix

imxConstraintRelations
imxConstraintRelations

Description

A string vector of valid constraint binary relations.

Usage

imxConstraintRelations

Format

An object of class character of length 3.

imxConvertIdentifier imxConvertldentifier

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConvertIdentifier(identifiers, modelname, namespace, strict = FALSE)

34 imxConvertSubstitution

Arguments
identifiers identifiers
modelname modelname
namespace namespace
strict strict
imxConvertLabel imxConvertLabel
Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConvertLabel (1label, modelname, dataname, namespace)

Arguments
label label
modelname modelname
dataname dataname
namespace namespace

imxConvertSubstitution
imxConvertSubstitution

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxConvertSubstitution(substitution, modelname, namespace)

Arguments
substitution substitution
modelname modelname

namespace namespace

imxCreateMatrix

imxCreateMatrix Create a matrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxCreateMatrix(
.Object,
labels,
values,
free,
lbound,
ubound,
nrow,
ncol,
byrow,
name,
condenseSlots,
joinKey,
joinModel

Arguments

.Object the matrix
labels labels
values values
free free
1bound Ibound
ubound ubound
nrow nrow

ncol ncol
byrow byrow
name name
condenseSlots condenseSlots
joinKey joinKey
joinModel joinModel

36 imxDefaultGetSlotDisplayNames

imxDataTypes Valid types of data that can be contained by MxData

Description

Valid types of data that can be contained by MxData

Usage

imxDataTypes

Format

An object of class character of length 4.

imxDefaultGetSlotDisplayNames
imxDefaultGetSlotDisplayNames

Description

Returns a list of display-friendly object slot names This is an internal function exported for those
people who know what they are doing.

Usage

imxDefaultGetSlotDisplayNames(x, pattern = ".%")
Arguments

X The object from which to get slot names

pattern Initial pattern to match (default of °.*’ matches any)

imxDeparse

37

imxDeparse Deparse for MxObjects
Description
Deparse for MxObjects
Usage
imxDeparse(object, indent = " ")
Arguments
object object
indent indent
imxDependentModels Are submodels dependence?
Description

Are submodels dependence?

Usage

imxDependentModels(model)

Arguments

model model

imxDetermineDefaultOptimizer
imxDetermineDefaultOptimizer

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxDetermineDefaultOptimizer ()

Details

Returns a character, the default optimizer

38 imxEvalByName

imxDmvnorm A C implementation of dmvnorm

Description

This API is visible to permit testing. Please do not use.

Usage

imxDmvnorm(loc, mean, sigma)

Arguments
loc loc
mean mean
sigma sigma
imxEvalByName imxEvalByName
Description

This is an internal function exported for those people who know what they are doing.

Usage

imxEvalByName (name, model, compute = FALSE, show = FALSE)

Arguments
name name
model model
compute compute

show show

imxExtractMethod

39

imxExtractMethod imxExtractMethod

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxExtractMethod(model, index)

Arguments
model model
index index
imxExtractNames imxExtractNames
Description

This is an internal function exported for those people who know what they are doing.

Usage
imxExtractNames(lst)
Arguments
1st Ist

imxExtractReferences imxExtractReferences

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxExtractReferences(lst)

Arguments

Ist Ist

40 imxFlattenModel

imxExtractSlot imxExtractSlot

Description

Checks for and extracts a slot from the object This is an internal function exported for those people
who know what they are doing.

Usage

imxExtractSlot(x, name)

Arguments
X The object
name the name of the slot
imxFlattenModel Remove hierarchical structure from model
Description

Remove hierarchical structure from model

Usage

imxFlattenModel (model, namespace, unsafe = FALSE)

Arguments
model model
namespace namespace

unsafe whether to skip sanity checks

imxFreezeModel

imxFreezeModel Freeze model

Description

Remove free parameters and fit function from model.

Usage

imxFreezeModel (model)

Arguments

model model

imxGeneratelLabels imxGenerateLabels

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGeneratelLabels(model)

Arguments

model model

imxGenerateNamespace imxGenerateNamespace

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGenerateNamespace (model)

Arguments

model model

42 imxGenSwift

imxGenericModelBuilder
imxGenericModelBuilder

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGenericModelBuilder(
model,
1st,
name,
manifestVars,
latentVars,
productVars,
submodels,
remove,
independent

Arguments

model model
1st Ist
name name

manifestVars manifestVars

latentVars latentVars
productVars productVars
submodels submodels
remove remove
independent independent
imxGenSwift imxGenSwift
Description

This is an internal function exported for those people who know what they are doing.

Usage

imxGenSwift(tc, sites, sfile)

imxGentleResize 43

Arguments
tc tc
sites sites
sfile sfile
imxGentleResize Resize an MxMatrix while preserving entries
Description

Resize an MxMatrix while preserving entries

Usage

imxGentleResize(matrix, dimnames)

Arguments

matrix the MxMatrix to resize

dimnames desired dimnames for the new matrix
Value

a resized MxMatrix

Examples

ml <- mxMatrix(values=1:9, nrow=3, ncol=3,
dimnames=list(paste@('r',1:3), paste@d('c',1:3)))

imxGentleResize(m1, dimnames=list(paste@('r',c(1,3,5)),
paste@('c',c(2,4,6))))

imxGetNumThreads imxGetNumThreads

Description

This is an internal function exported for those people who know what they are doing.

This function hard codes responses to a set of environments, like detecting snowfall, or running
on a cluster where "OMP_NUM_THREADS" is set or otherwise returning 1 or 2 cores to avoid
consuming all the resources on CRAN’s test machines during release cycles.

This makes it not suitable for getting the number of available threads.

To get the number of cores available locally you want omxDetectCores or perhaps the detectCores
function in the parallel package.

44 imxHasConstraint

Usage

imxGetNumThreads ()

imxGetSlotDisplayNames
imxGetSlotDisplayNames

Description

Returns a list of display-friendly object slot names This is an internal function exported for those
people who know what they are doing.

Usage
imxGetSlotDisplayNames(
object,
pattern = ".x",

slotList = slotNames(object),
showDots = FALSE,
showEmpty = FALSE

)
Arguments
object The object from which to get slot names
pattern Initial pattern to match (default of *.*” matches any)
slotlList List of slots for which toget display names (default = slotNames(object), i.e.,
all)
showDots Include slots whose names start with ’.’ (default FALSE)
showEmpty Include slots with length-zero contents (default FALSE)
imxHasConstraint imxHasConstraint
Description

This is an internal function exported for those people who know what they are doing. This function
checks if a model (or its submodels) has at least one MxConstraint.

Usage

imxHasConstraint (model)

Arguments

model model

imxHasDefinition Variable 45

imxHasDefinitionVariable
imxHasDefinitionVariable

Description
This is an internal function exported for those people who know what they are doing. This function
checks if a model (or its submodels) has at least one definition variable.

Usage

imxHasDefinitionVariable(model)

Arguments

model model

imxHasNPSOL imxHasNPSOL

Description

imxHasNPSOL

Usage
imxHasNPSOL ()

Value

Returns TRUE if the NPSOL proprietary optimizer is compiled and linked with OpenMx. Other-
wise FALSE.

imxHasOpenMP imxHasOpenMP

Description

This is an internal function exported for those people who know what they are doing.

Usage
imxHasOpenMP ()

46 imxlIdentifier

imxHasThresholds imxHasThresholds

Description
This is an internal function exported for those people who know what they are doing. This function
checks if a model (or its submodels) has any thresholds.

Usage
imxHasThresholds(model)

Arguments

model model

imxHasWLS imxHasWLS

Description
This is an internal function exported for those people who know what they are doing. This function
checks if a model uses a fitfunction with WLS units.

Usage
imxHasWLS (model)

Arguments

model model

imxIdentifier imxIdentifier

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxIdentifier(namespace, name)

Arguments

namespace namespace

name name

imxIndependentModels

47

imxIndependentModels Are submodels independent?

Description

Are submodels independent?

Usage

imxIndependentModels(model)

Arguments

model model

imxInitModel imxInitModel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxInitModel (model)
Arguments

model model

imxIsDefinitionVariable
imxIsDefinitionVariable

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxIsDefinitionVariable(name)

Arguments

name name

48 imxIsStateSpace

imxIsMultilevel imxIsMultilevel

Description

This is an internal function exported for those people who know what they are doing. If you don’t
know what you’re doing, but want to, here’s a brief description of the function. You give this
function an MxModel. It returns TRUE if the model is multilevel and FALSE otherwise.

Usage

imxIsMultilevel (model)

Arguments

model model

imxIsPath imxIsPath

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxIsPath(value)

Arguments

value value

imxIsStateSpace imxIsStateSpace

Description

This is an internal function exported for those people who know what they are doing. If you don’t

know what you’re doing, but want to, here’s a brief description of the function. You give this

function an MxModel. It returns TRUE if the model is a state space model and FALSE otherwise.
Usage

imxIsStateSpace(model)

Arguments

model model

imxLocateFunction

49

imxLocateFunction imxLocateFunction

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLocateFunction(function_name)

Arguments

function_name function_name

imxLocateIndex imxLocatelndex

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLocateIndex(model, name, referant)

Arguments
model model
name name

referant referant

50 imxLookupSymbolTable

imxLocatelLabel imxLocateLabel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLocatelLabel (label, model, parameter)

Arguments
label label
model model
parameter parameter
imxLog Test thread-safe output code
Description

This is the code that the backend uses to write diagnostic information to standard error. This func-
tion should not be called from R. We make it available only for testing.

Usage

imxLog(str)

Arguments

str the character string to output

imxLookupSymbolTable imxLookupSymbolTable

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxLookupSymbolTable (name)

Arguments

name name

imxModelBuilder 51

imxModelBuilder imxModelBuilder

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxModelBuilder(
model,
1st,
name,
manifestVars,
latentVars,
productVars,
submodels,
remove,
independent

Arguments
model model
1st Ist
name name

manifestVars manifestVars

latentVars latentVars

productVars productVars

submodels submodels

remove remove

independent independent
Details

TODO: It probably makes sense to split this into separate methods. For example, modelAddVari-
ables and modelRemoveVariables could be their own methods. This would reduce some cut&paste
duplication.

52 imxOriginalMx

imxModelTypes imxModelTypes

Description

A list of supported model types

Usage

imxModelTypes

Format

An object of class 1ist of length 3.

imxMpiWrap imxMpiWrap

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxMpiWrap(fun)

Arguments

fun fun

imxOriginalMx Run an classic mx script

Description

For this to work, classic mx must be installed, and callable from the command line.

Usage

imxOriginalMx(mx.filename, output.directory)

imxPenalty Types 53

Arguments

mx . filename Name of file containing the mx script.

output.directory
Where to write mxo output from the script

Value

processed matrix output.

Examples
Not run:
output = imxOriginalMx(mx.filename = "powerl1.mx", "~/Desktop”)

End(Not run)

imxPenaltyTypes imxPenaltyTypes

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxPenaltyTypes

Format

An object of class character of length 3.

Details

Types of regularization penalties.

54 imxPPML.Test.Battery

imxPPML imxPPML

Description

Potentially enable the PPML optimization for the given model.

Usage
imxPPML(model, flag = TRUE)

Arguments
model the MxModel to evaluate
flag whether to potentially enable PPML

imxPPML.Test.Battery imxPPML.Test Battery

Description

PPML can be applied to a number of special cases. This function will test the given model for all
of these special cases.

Usage

imxPPML.Test.Battery(
model,
verbose = FALSE,
testMissingness = TRUE,
testPermutations = TRUE,
testEstimates = TRUE,
testFakeLatents = TRUE,
tolerances = c(0.001, 0.001, 0.001)

)
Arguments
model the model to test
verbose whether to print diagnostics
testMissingness
try with missingness
testPermutations

try with permutations

imxPPML.Test. Test 55

testEstimates examine estimates
testFakelLatents

try with fake latents

tolerances a vector of tolerances

Details

Requirements for model passed to this function: - Path-specified - Means vector must be present -
Covariance data (with data means vector) - (Recommended) All error variances should be specified
on the diagonal of the S matrix, and not as a latent with a loading only on to that manifest

Function will test across all permutations of: - Covariance vs Raw data - Means vector present vs
Means vector absent - Path versus Matrix specification - All orders of permutations of latents with
manifests

imxPPML.Test.Test imxPPML.Test. Test

Description

Test that PPML solutions match non-PPML solutions.

Usage

imxPPML.Test.Test(
model,
checkLL = TRUE,
checkByName = FALSE,
tolerance = 0.5,
testEstimates = TRUE

)

Arguments
model the MxModel to evaluate
checkLL whether to check log likelihood
checkByName check values using their names
tolerance closeness tolerance for check

testEstimates whether to test for the same parameter estimates

Details

This is an internal function used for comparing PPML and non-PPML solutions. Generally, non-
developers will not use this function.

56 imxReplaceModels

imxPreprocessModel imxPreprocessModel

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxPreprocessModel (model)

Arguments

model model

imxReplaceMethod imxReplaceMethod

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxReplaceMethod(x, name, value)

Arguments
X the thing
name name
value value
imxReplaceModels Replace parts of a model
Description

Replace parts of a model

Usage

imxReplaceModels(model, replacements)

Arguments

model model
replacements replacements

imxReplaceSlot 57

imxReplaceSlot imxReplaceSlot

Description

Checks for and replaces a slot from the object This is an internal function exported for those people
who know what they are doing.

Usage

imxReplaceSlot(x, name, value, check = TRUE)

Arguments
X object
name the name of the slot
value replacement value
check Check replacement value for validity (default TRUE)
imxReportProgress Report backend progress
Description

Prints a show status string to the console without emitting a newline.

Usage

imxReportProgress(info, eraselen)

Arguments
info the character string to print
eraselen the number of characters to erase
Examples
library(OpenMx)

previouslLen <<- @

easyReportProcess <- function(msg) {
imxReportProgress(msg, previouslLen)
previousLen <<- nchar(msg)

}

58

demo <- function() {
easyReportProcess("abc123")
Sys.sleep(1)
easyReportProcess(”this is much longer")
Sys.sleep(1)
easyReportProcess("this is short")
Sys.sleep(1)
easyReportProcess(”almost done”)
Sys.sleep(1)

easyReportProcess("")

cat("DONE!", fill=TRUE)

}

demo()

imxReverseldentifier

imxReservedNames imxReservedNames

Description

Vector of reserved names

Usage

imxReservedNames

Format

An object of class character of length 7.

imxReverseldentifier imxReverseldentifier

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxReverseldentifier(model, name)

Arguments

model model

name name

imxRobustSE 59

imxRobustSE imxRobustSE

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxRobustSE (model, details = FALSE, dependencyModels = character(@))

Arguments
model An OpenMx model object that has been run.
details Logical. whether to return the full parameter covariance matrix.
dependencyModels
Passed to imxRowGradients().
Details

This function computes robust standard errors via a sandwich estimator. The "bread" of the sand-
wich is the numerically computed inverse Hessian of the likelihood function. This is what is typi-
cally used for standard errors throughout OpenMx. The "meat" of the sandwich is proportional to
the covariance matrix of the numerically computed row derivatives of the likelihood function (i.e.
row gradients).

When details=FALSE, only the standard errors are returned.

When details=TRUE, a list with five named elements is returned. Element SE is the vector of stan-
dard errors that is also returned when details=FALSE. Element cov is the full robust covariance
matrix of the parameter estimates; the square root of the diagonal of cov gives the standard er-
rors. Element bread is the aforementioned "bread"—the naive (non-robust) covariance matrix of the
parameter estimates. Element meat is the aforementioned "meat," proportional to the covariance
matrix of the row gradients. Element TIC is the model’s Takeuchi Information Criterion, which
is a generalization of AIC calculated from the "bread," the "meat," and the loglikelihood at the
maximume-likelihood solution.

This function does not work correctly with multigroup models in which the groups themselves
contain subgroups. This function also does not correctly handle multilevel data.

60 imxSameType

imxRowGradients imxRowGradients

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxRowGradients(model, robustSE = FALSE, dependencyModels = character(Q))

Arguments
model An OpenMx model object that has been run
robustSE Logical; are the row gradients being requested to calculate robust standard er-
rors?
dependencyModels
Vector of character strings naming submodels that do not contain data, but con-
tain objects to which data-containing models make reference.
Details

This function computes the gradient for each row of data. The returned object is a matrix with the
same number of rows as the data, and the same number of columns as there are free parameters.

imxSameType imxSameType

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxSameType(a, b)

Arguments

a a

b b

imxSeparatorChar 61

imxSeparatorChar imxSeparatorChar

Description

The character between the model name and the named entity inside the model.

Usage

imxSeparatorChar

Format

An object of class character of length 1.

imxSfClient imxSfClient

Description

As of snowfall 1.84, the snowfall supervisor process stores an internal state information in a variable

named ".sfOption" that is located in the "snowfall" namespace. The snowfall client processes store

internal state information in a variable named ".sfOption" that is located in the global namespace.
Usage

imxSfClient ()

Details

As long as the previous statement is true, then the current process is a snowfall client if-and-only-if
exists(".sfOption").

imxSimpleRAMPredicate imxSimpleRAMPredicate

Description

This is an internal function exported for those people who know what they are doing.

Usage
imxSimpleRAMPredicate(model)

Arguments

model model

62 imxSymmetricMatrix

imxSparselnvert Sparse symmetric matrix invert

Description

This API is visible to permit testing. Please do not use.

Usage

imxSparselnvert(mat)

Arguments

mat the matrix to invert

imxSquareMatrix imxSquareMatrix

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxSquareMatrix(.0Object)

Arguments
.Object .Object
imxSymmetricMatrix imxSymmetricMatrix
Description

This is an internal function exported for those people who know what they are doing.

Usage

imxSymmetricMatrix(.Object)

Arguments

.Object .Object

imxTypeName

63

imxTypeName imxTypeName

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxTypeName (model)

Arguments

model model

imxUntitledName imxUntitledName

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxUntitledName()

Details

Returns a character, the name of the next untitled entity

imxUntitledNumber imxUntitledNumber

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxUntitledNumber ()

Details

Increments the untitled number counter and returns its value

64 imxUpdateModel Values

imxUntitledNumberReset
imxUntitledNumberReset

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxUntitledNumberReset ()

Details

Resets the imxUntitledNumber counter

imxUpdateModelValues imxUpdateModelValues

Description

Deprecated. This function does not handle parameters with equality constraints. Do not use.

Usage

imxUpdateModelValues(model, flatModel, values)

Arguments
model model
flatModel flat model

values values to update

imx Variable Types

65

imxVariableTypes imxVariableTypes

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVariableTypes

Format

An object of class character of length 2.

Details

The acceptable variable types

imxVerifyMatrix imxVerifyMatrix

Description

This is an internal function exported for those people who know what they are doing.

Usage
imxVerifyMatrix(.0Object)

Arguments

.Object .Object

imxVerifyModel imxVerifyModel

Description

This is an internal function exported for those people who know what they are doing.

Usage
imxVerifyModel (model)

Arguments

model model

66 imx VerifyReference

imxVerifyName imxVerifyName

Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVerifyName(name, stackNumber)

Arguments
name name
stackNumber stackNumber
imxVerifyReference imxVerifyReference
Description

This is an internal function exported for those people who know what they are doing.

Usage

imxVerifyReference(reference, stackNumber)

Arguments

reference reference

stackNumber stackNumber

imxWIsChiSquare 67

imxW1lsChiSquare Calculate Chi Square for a WLS Model

Description

This is an internal function used to calculate the Chi Square distributed fit statistic for weighted
least squares models.

Usage

imxW1lsChiSquare(model, J=NA)

Arguments
model An MxModel object with acov (WLS) data
J Optional pre-computed Jacobian matrix
Details

The Chi Square fit statistic for models fit with maximum likelihood depends on the difference in
model fit in minus two log likelihood units between the saturated model and the more restricted
model under investigation. For models fit with weighted least squares a different expression is
required. If J is the first derivative (Jacobian) of the mapping from the free parameters to the unique
elements of the expected covariance, means, and threholds, J. is the orthogonal complement of J,
W is the inverse of the full weight matrix, and e is the difference between the sample-estimated and
model-implied covariance, means, and thresholds, then the Chi Square fit statistic is

=€ J(JIW)" 1e
with ¢’ indicating the transpose of e. This Equation 2.20a from Browne (1984) where he showed

that this statistic is chi-square distributed with the conventional degrees of freedom.

Mean and variance adjusted Chi Square statistics are also computed following Asparouhov and
Muthen (2006).

Value
A named list with components

Chi numeric value of the Chi Square fit statistic.

ChiDoF degrees of freedom for the Chi Square fit statistic.

ChiM numeric value of the mean adjusted Chi Square fit statistic

ChiMV numeric value of the mean and variance adjusted Chi Square fit statistic
mAdjust numeric value of the mean adjustment

mvAdjust numeric value of the mean and variance adjustment

dstar adjusted degrees of freedom for the mean and variance adjusted Chi Square fit statistic

68 imx WilsStandardErrors

References
M. W. Browne. (1984). Asymptotically Distribution-Free Methods for the Analysis of Covariance
Structures. British Journal of Mathematical and Statistical Psychology, 37, 62-83.

T. Asparouhov and B. O. Muthen. (2006). Robust Chi Square Difference Testing with Mean and
Variance Adjusted Test Statistics. Mplus Web Notes: No. 10.

imxWlsStandardErrors Calculate Standard Errors for a WLS Model

Description

This is an internal function used to calculate standard errors for weighted least squares models.

Usage

imxWlsStandardErrors(model)

Arguments

model An MxModel object with acov (WLS) data

Details

The standard errors for models fit with maximum likelihood are related to the second deriva-
tive (Hessian) of the likelihood function with respect to the free parameters. For models fit with
weighted least squares a different expression is required. If .J is the first derivative (Jacobian) of
the mapping from the free parameters to the unique elements of the expected covariance, means,
and thresholds, V' is the weight matrix used, W is the inverse of the full weight matrix, and
U = VJ(J'VJ)~L, then the asymptotic covariance matrix of the free parameters is

Acov(0) = U'WU

with U’ indicating the transpose of U.

Value
A named list with components

SE The standard errors of the free parameters

Cov The full covariance matrix of the free parameters. The square root of the diagonal elements of
Cov equals SE.

Jac The Jacobian computed to obtain the standard errors.

References

M. W. Browne. (1984). Asymptotically Distribution-Free Methods for the Analysis of Covariance
Structures. British Journal of Mathematical and Statistical Psychology, 37, 62-83.

F. Yang-Wallentin, K. G. Joreskog, & H. Luo. (2010). Confirmatory Factor Analysis of Ordinal
Variables with Misspecified Models. Structural Equation Modeling, 17, 392-423.

Jjointdata 69

jointdata Joint Ordinal and continuous variables to be modeled together

Description

Data set used in some of OpenMx’s examples.

Usage

data(”jointdata")

Format
A data frame with 250 observations on the following variables.
z1 Continuous variable
z2 Ordinal variable with 2 levels (0, 1)
z3 Continuous variable

z4 Ordinal variable with 4 levels (0, 1, 2, 3)
z5 Ordinal variable with 3 levels (0, 1, 3)

Details

Data generated to test the joint ML algorithm thoroughly.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(jointdata)
head(jointdata)

https://openmx.ssri.psu.edu/documentation/

70

latentMultipleRegExample |

latentMultipleRegExamplel

Example data for multiple regression among latent variables

Description

Data set used in some of OpenMx’s examples.

Usage

data("latentMultipleRegExamplel")

Format

A data frame with 200 observations on the following variables.

X1
X2
X3
X4
X5
X6
X7
X8
X9

X10 Factor 3 indicator
X11 Factor 3 indicator

X12 Factor 3 indicator

Details

Factor 1 indicator
Factor 1 indicator
Factor 1 indicator
Factor 1 indicator
Factor 2 indicator
Factor 2 indicator
Factor 2 indicator
Factor 2 indicator

Factor 3 indicator

Factor 1 strongly predicts factor 3. Factor 2 weakly predicts factor 3.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(latentMultipleRegExamplel)
round(cor(latentMultipleRegExamplel), 2)

https://openmx.ssri.psu.edu/documentation/

latentMultipleRegExample2 71

latentMultipleRegExample?2
Example data for multiple regression among latent variables

Description

Data set used in some of OpenMx’s examples.

Usage

data("latentMultipleRegExample2")

Format
A data frame with 200 observations on the following variables.

X1 Factor 1 indicator
X2 Factor 1 indicator
X3 Factor 1 indicator
X4 Factor 1 indicator
X5 Factor 2 indicator
X6 Factor 2 indicator
X7 Factor 2 indicator
X8 Factor 2 indicator
X9 Factor 3 indicator
X10 Factor 3 indicator
X11 Factor 3 indicator

X12 Factor 3 indicator

Details
Factor 1 strongly predicts factor 3. Factor 2 weakly predicts factor 3. Very similar to latentMulti-
pleRegExamplel.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(latentMultipleRegExample2)
round(cor(latentMultipleRegExample2), 2)

https://openmx.ssri.psu.edu/documentation/

72 lazarsfeld

lazarsfeld Respondent-soldiers on four dichotomous items

Description

Data set used in some of OpenMx’s examples.

Usage

data("lazarsfeld")

Format
A data frame with 1000 observations on four dichotomous items.

armyrun In general how do you feel the Army is run?

favatt Do you think when you are discharged you will [have] a favorable attitude toward the
Army?

squaredeal In general do you feel you yourself have gotten a square deal from the Army?

welfare Do you feel that the Army is trying its best to look out for the welfare of enlisted men?

frequency Frequency of response pattern.

Details

A straightforward descriptive analysis of these data shows that negative responses are more nu-
merous except on item 1; and that there is a positive association between each pair of items. A
soldier who responds positively to any one item is more likely to respond positively to a second
item. Lazarsfeld’s analysis is based on the assumption that each soldier can be thought of as belong
to one of two latent classes. The probability of positive response to an item is different in one group
than in the other. Most importantly, he is willing to assume that for an individual respondent the
responses to items are statistically independent.

Source

Lazarsfeld, Paul F. (1950b) "Some Latent Structures", Chapter 11 in Stouffer (1950).

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also
http://www.people.vcu.edu/~nhenry/LSA50.htm

Examples

data(lazarsfeld)

https://openmx.ssri.psu.edu/documentation/

logm 73

logm Matrix logarithm

Description

Matrix logarithm

Usage
logm(x, tol = .Machine$double.eps)

Arguments
X matrix
tol tolerance

LongitudinalOverdispersedCounts
Longitudinal, Overdispersed Count Data

Description

Four-timepoint longitudinal data generated from an arbitrary Monte Carlo simulation, for 1000
simulees. The response variable is a discrete count variable. There are three time-invariant covari-
ates. The data are available in both "wide" and "long" format.

Usage

data("LongitudinalOverdispersedCounts")

Format
The "long" format dataframe, longData, has 4000 rows and the following variables (columns):

1. id: Factor; simulee ID code.

2. tiem: Numeric; represents the time metric, wave of assessment.
3. x1: Numeric; time-invariant covariate.

4. x2: Numeric; time-invariant covariate.

5. x3: Numeric; time-invariant covariate.

6. y: Numeric; the response ("dependent") variable.

The "wide" format dataset, wideData, is a numeric 1000x12 matrix containing the following vari-
ables (columns):

1. id: Simulee ID code.

74 multiDatal

x1: Time-invariant covariate.

x3: Time-invariant covariate.

x3: Time-invariant covariate.

y@: Response at initial wave of assessment.
y1: Response at first follow-up.

y2: Response at second follow-up.

y3: Response at third follow-up.

e A o

t0: Time variable at initial wave of assessment (in this case, 0).

,_.
e

t1: Time variable at first follow-up (in this case, 1).

—
—_

. t2: Time variable at second follow-up (in this case, 2).

—_
[\

. t3: Time variable at third follow-up (in this case, 3).

Examples

data(LongitudinalOverdispersedCounts)

head(wideData)

str(longData)

#let's try ordinary least-squares (OLS) regression:

olsmod <- Im(y~tiem+x1+x2+x3, data=longData)

#We will see in the diagnostic plots that the residuals are poorly approximated by normality,
#and are heteroskedastic. We also know that the residuals are not independent of one another,
#because we have repeated-measures data:

plot(olsmod)

#In the summary, it looks like all of the regression coefficients are significantly different
#from zero, but we know that because the assumptions of OLS regression are violated that
#we should not trust its results:

summary (olsmod)

#let's try a generalized linear model (GLM). We'll use the quasi-Poisson quasilikelihood
#function to see how well the y variable is approximated by a Poisson distribution
#(conditional on time and covariates):

glm.mod <- glm(y~tiem+x1+x2+x3, data=longData, family="quasipoisson”)

#The estimate of the dispersion parameter should be about 1.0 if the data are
#conditionally Poisson. We can see that it is actually greater than 2,

#indicating overdispersion:

summary (glm.mod)

multiDatal Data for multiple regression

Description

Data set used in some of OpenMx’s examples.

Usage

data("multiDatal”)

mxAlgebra 75

Format
A data frame with 500 observations on the following variables.

x1
X2
X3
x4

y

Details

x1-x4 are predictor variables, and y is the outcome.

Source

Simulated.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Examples

data(multiDatal)
summary(1lm(y ~ ., data=multiDatal))
#results can be replicated in OpenMx.

mxAlgebra Create MxAlgebra Object

Description

This function creates a new MxAlgebra. The common use is to compute a value in a model: for
instance a standardized value of a parameter, or a parameter which is a function of other values. It
is also used in models with an mxFitFunctionAlgebra objective function.

note: Unless needed in the model objective, algebras are only computed twice: once at the begin-
ning and once at the end of running a model, so adding them doesn’t often add a lot of overhead.

Usage

mxAlgebra(expression, name = NA, dimnames = NA, ..., fixed = FALSE,
joinKey=as.character(NA), joinModel=as.character(NA),
verbose=0L, initial=matrix(as.numeric(NA),1,1),
recompute=c('always', 'onDemand"'))

https://openmx.ssri.psu.edu/documentation/

76

Arguments

expression
name

dimnames

fixed
joinKey

joinModel
verbose

initial

recompute

Details

mxAlgebra

An R expression of OpenMx-supported matrix operators and matrix functions.
An optional character string indicating the name of the object.

list. The dimnames attribute for the algebra: a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.

Not used. Forces other arguments to be specified by name.
Deprecated. Use the ‘recompute’ argument instead.

The name of the column in current model’s raw data that is used as a foreign key
to match against the primary key in the joinModel’s raw data.

The name of the model that this matrix joins against.
For values greater than zero, enable runtime diagnostics.

a matrix. When recompute="'onDemand', you must provide this initial algebra
result.

If ‘onDemand’, this algebra will not be recomputed automatically when things
it depends on change. mxComputeOnce can be used to force it to recompute.

The mxAlgebra function is used to create algebraic expressions that operate on one or more MxMa-
trix objects. To evaluate an MxAlgebra object, it must be placed in an MxModel object, along with

all referenced MxMatrix objects and the mxFitFunctionAlgebra function. The mxFitFunctionAlgebra

function must reference by name the MxAlgebra object to be evaluated.

Note: f the result for an MxAlgebra depends upon one or more "definition variables" (see mxMatrix()),

then the value returned after the call to mxRun() will be computed using the values of those defini-
tion variables in the first (i.e., first before any automated sorting is done) row of the raw dataset.

The following operators and functions are supported in mxAlgebra:

Operators

solve() Inversion

t() Transposition

* Elementwise powering

%% Kronecker powering

+ Addition

- Subtraction

%*% Matrix Multiplication

* Elementwise product

/ Elementwise division

%x% Kronecker product

%&% Quadratic product: pre- and post-multiply B by A and its transpose t(A), i.e: A %&% B ==
%%% B %*% t(A)

mxAlgebra 77

Functions

cov2cor Convert covariance matrix to correlation matrix
chol Cholesky Decomposition

cbind Horizontal adhesion

rbind Vertical adhesion

colSums Matrix column sums as a column vector
rowSums Matrix row sums as a column vector
det Determinant

tr Trace

sum Sum

mean Arithmetic mean

prod Product

max Maximum

min Min

abs Absolute value

sin Sine

sinh Hyperbolic sine

asin Arcsine

asinh Inverse hyperbolic sine

cos Cosine

cosh Hyperbolic cosine

acos Arccosine

acosh Inverse hyperbolic cosine

tan Tangent

tanh Hyperbolic tangent

atan Arctangent

atanh Inverse hyperbolic tangent

exp Exponent

log Natural Logarithm

mxRobustLog Robust natural logarithm

sqrt Square root

p2z Standard-normal quantile

logp2z Standard-normal quantile from log probabilities
lgamma Log-gamma function

lgammalp Compute log(gamma(x+1)) accurately for small x

eigenval FEigenvalues of a square matrix. Usage: eigenval(x); eigenvec(x); ieigenval(x); ieigen-
vec(x)

78

mxAlgebra

rvectorize Vectorize by row

cvectorize Vectorize by column

vech Half-vectorization

vechs Strict half-vectorization

vech2full Inverse half-vectorization

vechs2full Inverse strict half-vectorization

vec2diag Create matrix from a diagonal vector (similar to diag)
diag2vec Extract diagonal from matrix (similar to diag)

expm Matrix Exponential

logm Matrix Logarithm

omxExponential Matrix Exponential

omxMnor Multivariate Normal Integration

omxAllInt All cells Multivariate Normal Integration

omxNot Perform unary negation on a matrix

omxAnd Perform binary and on two matrices

omxOr Perform binary or on two matrices

omxGreaterThan Perform binary greater on two matrices
omxLessThan Perform binary less than on two matrices
omxApproxEquals Perform binary equals to (within a specified epsilon) on two matrices
omxSelectRows Filter rows from a matrix

omxSelectCols Filter columns from a matrix
omxSelectRowsAndCols Filter rows and columns from a matrix
mxEvaluateOnGrid Evaluate an algebra on an abscissa grid and collect column results

mpinv Moore-Penrose Inverse

If solve is used on an uninvertible square matrix in R, via mxEval (), it will fail with an error will;
if solve is used on an uninvertible square matrix during runtime, it will fail silently.

mxRobustLog is the same as log except that it returns -745 instead of -Inf for an argument of 0.
The value -745 is less than log(4.94066e-324), a good approximation of negative infinity because
the log of any number represented as a double will be of smaller absolute magnitude.

There are also several multi-argument functions usable in MxAlgebras, which apply themselves
elementwise to the matrix provided as their first argument. These functions have slightly different
usage from their R counterparts. Their result is always a matrix with the same dimensions as that
provided for their first argument. Values must be provided for ALL arguments of these functions,
in order. Provide zeroes as logical values of FALSE, and non-zero numerical values as logical values
of TRUE. For most of these functions, OpenMx cycles over values of arguments other than the first,
by column (i.e., in column-major order), to the length of the first argument. Notable exceptions are
the log, log.p, and lower.tail arguments to probability-distribution-related functions, for which
only the [1,1] element is used. It is recommended that all arguments after the first be either (1)
scalars, or (2) matrices with the same dimensions as the first argument.

mxAlgebra 79

Function Arguments Notes
bessell & besselK X,Nnu,expon.scaled Note that OpenMx does cycle over the elements of ex
besselJ & besselY X, Nu
dbeta X, shape1, shape2,ncp, log The algorithm for the non-central beta distribution is u
pbeta g, shapel,shape2,ncp,lower.tail,log.p Values of ncp are handled as with dbeta().
dbinom X,size,prob,log
pbinom q,size,prob,lower.tail,log.p
dcauchy x,location,scale, log
pcauchy g,location,scale,lower.tail,log.p
dchisq x,df,ncp, log The algorithm for the non-central chi-square distributic
pchisq g,df,ncp,lower.tail,log.p Values of ncp are handled as with dchisq().
omxDnbinom X,size,prob,mu,log Exactly one of arguments size, prob, and mu should b
omxPnbinom q,size,prob,mu,lower.tail,log.p Arguments are handled as with omxDnbinom().
dpois X, lambda, log
ppois g, lambda, lower.tail,log.p

Value

Returns a new MxAlgebra object.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

MxAlgebra for the S4 class created by mxAlgebra. mxFitFunctionAlgebra for an objective function
which takes an MxAlgebra or MxMatrix object as the function to be minimized. MxMatrix and
mxMatrix for objects which may be entered in the expression argument and the function that
creates them. More information about the OpenMx package may be found here.

Examples

A <- mxMatrix("Full”, nrow = 3, ncol = 3, values=2, name = "A")

Simple example: algebra B simply evaluates to the matrix A
B <- mxAlgebra(A, name = "B")

Compute A + B
C <- mxAlgebra(A + B, name = "C")

Compute sin(C)
D <- mxAlgebra(sin(C), name = "D")

Make a model and evaluate the mxAlgebra object 'D'

A <- mxMatrix("Full”, nrow = 3, ncol = 3, values=2, name = "A")
model <- mxModel(model="AlgebraExample”, A, B, C, D)

fit <- mxRun(model)

mxEval(D, fit)

https://openmx.ssri.psu.edu/documentation/

80 MxAlgebra-class

Numbers in mxAlgebras are upgraded to 1x1 matrices

Example of Kronecker powering (%*%) and multiplication (%*x%)

A <- mxMatrix(type="Full”, nrow=3, ncol=3, value=c(1:9), name="A")

ml <- mxModel(model="kron", A, mxAlgebra(A %% 2, name="KroneckerPower"))
mxRun(m1) $KroneckerPower

Running kron
mxAlgebra 'KroneckerPower'
$formula: A %% 2
$result:

[,11 0,21 [,3]
[1,1 1 16 49
[2,] 4 25 64
[3,1 9 36 81

e E E EEE

MxAlgebra-class MxAlgebra Class

Description

MxAlgebra is an S4 class. An MxAlgebra object is a named entity. New instances of this class can
be created using the function mxAlgebra.

Details

The MxAlgebra class has the following slots:

name - The name of the object
formula - The R expression to be evaluated
result - amatrix with the computation result

The ‘name’ slot is the name of the MxAlgebra object. Use of MxAlgebra objects in the mxConstraint
function or an objective function requires reference by name.

The ‘formula’ slot is an expression containing the expression to be evaluated. These objects are

operated on or related to one another using one or more operations detailed in the mxAlgebra help
file.

The ‘result’ slot is used to hold the results of computing the expression in the ‘formula’ slot. If the
containing model has not been executed, then the ‘result’ slot will hold a 0 x O matrix. Otherwise
the slot will store the computed value of the algebra using the final estimates of the free parameters.

Slots may be referenced with the $ symbol. See the documentation for Classes and the examples in
the mxAlgebra document for more information.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

https://openmx.ssri.psu.edu/documentation/

MxAlgebraFormula-class 81
See Also
mxAlgebra, mxMatrix, MxMatrix
MxAlgebraFormula-class
MxAlgebraFormula
Description
This is an internal class for the formulas used in mxAlgebra calls.
mxAlgebraFromString Create MxAlgebra object from a string
Description
Create MxAlgebra object from a string
Usage
mxAlgebraFromString(algString, name = NA, dimnames = NA, D)
Arguments
algString the character string to convert into an R expression
name An optional character string indicating the name of the object.
dimnames list. The dimnames attribute for the algebra: a list of length 2 giving the row
and column names respectively. An empty list is treated as NULL, and a list of
length one as row names. The list can be named, and the list names will be used
as names for the dimensions.
Forwarded verbatim to mxAlgebra
See Also
mxAlgebra
Examples

A <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name

B <- mxMatrix(values = runif(25), nrow = 5, ncol = 5, name

model <- mxModel(A, B, name = 'model’,
mxAlgebraFromString("A x (B + A)", name = 'test'))

model <- mxRun(model)

model[['test']]$result

A$values * (B$values + A$values)

82 mxAlgebraObjective

mxAlgebraObjective DEPRECATED: Create MxAlgebraObjective Object

Description

WARNING: Objective functions have been deprecated as of OpenMx 2.0.

Please use MxFitFunctionAlgebra() instead. As a temporary workaround, MxAlgebraObjective
returns a list containing a NULL MxExpectation object and an MxFitFunctionAlgebra object.

All occurrences of

mxAlgebraObjective(algebra, numObs = NA, numStats = NA)
Should be changed to

mxFitFunctionAlgebra(algebra, numObs = NA, numStats = NA)

Arguments
algebra A character string indicating the name of an MxAlgebra or MxMatrix object to
use for optimization.
numObs (optional) An adjustment to the total number of observations in the model.
numStats (optional) An adjustment to the total number of observed statistics in the model.
Details

NOTE: THIS DESCRIPTION IS DEPRECATED. Please change to using mxFitFunctionAlgebra
as shown in the example below.

Fit functions are functions for which free parameter values are chosen such that the value of the ob-
jective function is minimized. While the other fit functions in OpenMXx require an expectation func-
tion for the model, the mxAlgebraObjective function uses the referenced MxAlgebra or MxMatrix
object as the function to be minimized.

If a model’s primary objective function is a mxAlgebraObjective objective function, then the ref-
erenced algebra in the objective function must return a 1 x 1 matrix (when using OpenMx’s default
optimizer). There is no restriction on the dimensions of an objective function that is not the primary,
or ‘topmost’, objective function.

To evaluate an algebra objective function, place the following objects in a MxModel object: a
MxAlgebraObjective, MxAlgebra and MxMatrix entities referenced by the MxAlgebraObjective,
and optional MxBounds and MxConstraint entities. This model may then be evaluated using the
mxRun function. The results of the optimization may be obtained using the mxEval function on the
name of the MxAlgebra, after the model has been run.

Value

Returns a list containing a NULL MxExpectation object and an MxFitFunctionAlgebra object.
MxFitFunctionAlgebra objects should be included with models with referenced MxAlgebra and
MxMatrix objects.

mxAutoStart 83

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxAlgebra to create an algebra suitable as a reference function to be minimized. More information
about the OpenMx package may be found here.

Examples
Create and fit a very simple model that adds two numbers using mxFitFunctionAlgebra
library(OpenMx)

Create a matrix 'A' with no free parameters
A <- mxMatrix('Full', nrow = 1, ncol = 1, values = 1, name = 'A")

Create an algebra 'B', which defines the expression A + A
B <- mxAlgebra(A + A, name = 'B')

Define the objective function for algebra 'B'
objective <- mxFitFunctionAlgebra('B")

Place the algebra, its associated matrix and
its objective function in a model
tmpModel <- mxModel(model="Addition"”, A, B, objective)

Evalulate the algebra
tmpModelOut <- mxRun(tmpModel)

View the results
tmpModelOut$output$minimum

mxAutoStart Automatically set starting values for an MxModel

Description

Automatically set starting values for an MxModel

Usage

mxAutoStart(model, type = c("ULS", "DWLS"))

Arguments
model The MxModel for which starting values are desired
type The type of starting values to obtain, currently unweighted or diagonally weighted

least squares, ULS or DWLS

https://openmx.ssri.psu.edu/documentation/

84 mxAutoStart

Details

This function automatically picks very good starting values for many models (RAM, LISREL,
Normal), including multiple group versions of these. It works for models with algebras. Models
of continuous, ordinal, and joint ordinal-continuous variables are also acceptable. It works for
models with covariance or raw data. However, it does not currently work for models with definition
variables, state space models, item factor analysis models, or multilevel models.

The method used to obtain new starting values is quite simple. The user’s model is changed to an
unweighted least squares (ULS) model. The ULS model is estimated and its final point estimates
are returned as the new starting values. Optionally, diagonally weighted least squares (DWLS) can
be used instead with the type argument.

Please note that ULS is sensitive to the scales of your variables. For example, if you have variables
with means of 20 and variances of 0.001, then ULS will "weight" the means 20,000 times more than
the variances and might result in zero variance estimates. Likewise if one variable has a variance
of 20 and another has a variance of 0.001, the same problem may arise. To avoid this, make sure
your variables are scaled accordingly. You could also use type='DWLS' to have the function use
diagonally weighted least squares to obtain starting values. Of course, using diagonally weighted
least squares will take much much longer and will usually not provide better starting values than
unweighted least squares.

Also note that if model contains a GREML expectation, argument type is ignored, and the function
always uses a form of ULS.

Value

an MxModel with new free parameter values

Examples

Use the frontpage model with negative variances to show better
starting values

library(OpenMx)

data(demoOneFactor)

latents = c("G") # the latent factor
manifests = names(demoOneFactor) # manifest variables to be modeled

ml <- mxModel("One Factor"”, type = "RAM",

manifestVars = manifests, latentVars = latents,

mxPath(from = latents, to = manifests),

mxPath(from = manifests, arrows = 2, values=-.2),

mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),

mxPath(from = "one"”, to = manifests),
mxData(demoOneFactor, type = "raw”
)

Starting values imply negative variances!
mxGetExpected(ml, 'covariance')

Use mxAutoStart to get much better starting values
mls <- mxAutoStart(m1)

mxAvailableOptimizers 85

mxGetExpected(mls, 'covariance')

mxAvailableOptimizers mxAvailableOptimizers

Description

List the Optimizers available in this version, e.g. "SLSQP" "CSOLNP"

Usage

mxAvailableOptimizers()

Details

note for advanced users: Special-purpose optimizers like Newton-Raphson or EM are not included
in this list.

Value

- list of valid Optimizer names

See Also

- mxOption(model, "Default optimizer")

Examples

mxAvailableOptimizers()

MxBaseExpectation-class
MxBaseExpectation

Description
The virtual base class for all expectations. Expectations contain enough information to generate
simulated data. This is an internal class and should not be used directly.

See Also

mxExpectationNormal, mxExpectationRAM, mxExpectationLISREL, mxExpectationStateSpace,
mxExpectationBA81

86 MxBaseObjectiveMetaData-class

MxBaseFitFunction-class
MxBaseFitFunction

Description

The virtual base class for all fit functions. This is an internal class and should not be used directly.

See Also

mxFitFunctionAlgebra, mxFitFunctionML, mxFitFunctionMultigroup, mxFitFunctionR, mxFitFunc-
tionWLS, mxFitFunctionRow, mxFitFunctionGREML

MxBaseNamed-class MxBaseNamed

Description

This is an internal class and should not be used directly. It is the base class for named entities. Fit
functions, expectations, and computes contain this class.

MxBaseObjectiveMetaData-class
MxBaseObjectiveMetaData

Description

This is an internal class and should not be used directly. It is the virtual base class for all objective
functions meta-data

mxBootstrap 87

mxBootstrap Repeatedly estimate model using resampling with replacement

Description

Bootstrapping is used to quantify the variability of parameter estimates. A new sample is drawn
from the model data (uniformly sampling the original data with replacement). The model is re-
fitted to this new sample. This process is repeated many times. This yields a series of estimates
from these replications which can be used to assess the variability of the parameters.

note: mxBootstrap only bootstraps free model parameters:
To bootstrap algebras, see mxBootstrapEval

To report bootstrapped standardized paths in RAM models, mxBootstrap the model, and then run
through mxBootstrapStdizeRAMpaths

Usage

mxBootstrap(model, replications=200, ...,
data=NULL, plan=NULL, verbose=0L,
parallel=TRUE, only=as.integer(NA),
OK=mxOption(model, "Status OK"), checkHess=FALSE, unsafe=FALSE)

Arguments

model The MxModel to be run.

replications The number of resampling replications. If available, replications from prior
mxBootstrap invocations will be reused.

Not used. Forces remaining arguments to be specified by name.

data A character vector of data or model names
plan Deprecated
verbose For levels greater than 0, enables runtime diagnostics
parallel Whether to process the replications in parallel (not yet implemented!)
only When provided, only the given replication from a prior run of mxBootstrap will
be performed. See details.
OK The set of status code that are considered successful
checkHess Whether to approximate the Hessian in each replication
unsafe A boolean indicating whether to ignore errors.
Details

By default, all datasets in the given model are resampled independently. If resampling is desired
from only some of the datasets then the models containing them can be listed in the ‘data’ parameter.

The frequency column in the mxData object is used represent a resampled dataset. When resam-
pling, the original row proportions, as given by the original frequency column, are respected.

88 mxBootstrap

When the model has a default compute plan and ‘checkHess’ is kept at FALSE then the Hessian
will not be approximated or checked. On the other hand, ‘checkHess’ is TRUE then the Hessian
will be approximated by finite differences. This procedure is of some value because it can be
informative to check whether the Hessian is positive definite (see mxComputeHessianQuality).
However, approximating the Hessian is often costly in terms of CPU time. For bootstrapping, the
parameter estimates derived from the resampled data are typically of primary interest.

On occasion, replications will fail. Sometimes it can be helpful to exactly reproduce a failed repli-
cation to attempt to pinpoint the cause of failure. The ‘only’ option facilitates this kind of investi-
gation. In normal operation, mxBootstrap uses the regular R random number generator to generate
a seed for each replication. This seed is used to seed an internal pseudorandom number generator
(currently the Mersenne Twister algorithm). These per-replication seeds are stored as part of the
bootstrap output. When ‘only’ is specified, the associated stored seed is used to seed the internal
random number generator so that identical weights can be regenerated.

mxBootstrap does not currently offer special support for nested, multilevel, or other dependent data
structures. mxBootstrap assumes rows of data are independent. Multilevel models and state space
models violate the independence assumption employed by mxBootstrap. By default the unsafe
argument prevents multilevel and state space models from using mxBootstrap; however, setting
unsafe=TRUE allows multilevel and state space models to use bootstrapping under the — perhaps
foolish — assumption that the user is sufficiently knowledgeable to interpret the results.

Value

The given model is returned with the compute plan modified to consist of mxComputeBootstrap.
Results of the bootstrap replications are stored inside the compute plan. mxSummary can be used to
obtain per-parameter quantiles and standard errors.

See Also

mxBootstrapEval, mxComputeBootstrap, mxSummary, mxBootstrapStdizeRAMpaths, as.statusCode

Examples

library(OpenMx)

data(multiDatal)

"o

manifests <- c("x1", "x2", "y")

biRegModelRaw <- mxModel(
"Regression of y on x1 and x2",
type="RAM",
manifestVars=manifests,
mxPath(from=c("x1","x2"), to="y",
arrows=1,
free=TRUE, values=.2, labels=c("b1", "b2")),
mxPath(from=manifests,
arrows=2,
free=TRUE, values=.8,
labels=c("Varx1"”, "Varx2", "Vart")),
mxPath(from="x1", to="x2",

mxBootstrapEval 89

arrows=2,

free=TRUE, values=.2,

labels=c("CovX1X2")),
mxPath(from="one", to=manifests,

arrows=1, free=TRUE, values=.1,

labels=c("MeanX1"”, "MeanX2", "MeanY")),
mxData(observed=multiDatal, type="raw"))

biRegModelRawOut <- mxRun(biRegModelRaw)

boot <- mxBootstrap(biRegModelRawOut, 10) # start with 10
summary (boot)

Looks good, now do the rest
boot <- mxBootstrap(boot)
summary (boot)

examine replication 3
boot3 <- mxBootstrap(boot, only=3)

print(coef(boot3))
print(boot$compute$output$raw[3, names(coef (boot3))])

mxBootstrapEval Evaluate Values in a bootstrapped MxModel

Description

This function can be used to evaluate an arbitrary R expression that includes named entities from a
MxModel object, or labels from a MxMatrix object.

Usage

1
-

mxBootstrapEval (expression, model, defvar.row
bg=c(.25,.75), method=c('bcbci', '"quantile'))

1
-

mxBootstrapEvalByName(name, model, defvar.row
bg=c(.25,.75), method=c('bcbci', 'quantile'))

omxBootstrapEval (expression, model, defvar.row = 1L, ...)
omxBootstrapEvalCov(expression, model, defvar.row = 1L, ...)

omxBootstrapEvalByName(name, model, defvar.row=1L, ...)

Arguments

expression An arbitrary R expression.

name The character name of an object to evaluate.

90 mxBootstrapEval
model The model in which to evaluate the expression.
defvar.row The row to use for definition variables when compute=TRUE (defaults to 1).
When compute=FALSE, values for definition variables are always taken from
the first (i.e., first before any automated sorting is done) row of the raw data.
Not used. Forces remaining arguments to be specified by name.
bq numeric. A vector of bootstrap quantiles at which to summarize the bootstrap
replication.
method character. One of ‘quantile’ or ‘bebcei’.
Details

The argument ‘expression’ is an arbitrary R expression. Any named entities that are used within the
R expression are translated into their current value from the model. Any labels from the matrices
within the model are translated into their current value from the model. Finally the expression is
evaluated and the result is returned. To enable debugging, the ‘show’ argument has been provided.
The most common mistake when using this function is to include named entities in the model that
are identical to R function names. For example, if a model contains a named entity named ‘c’, then
the following mxEval call will return an error: mxEval(c(A, B, C), model).

The mxEvalByName function is a wrapper around mxEval that takes a character instead of an R
expression.

nb: ‘bebei’ stands for ‘bias-corrected bootstrap confidence interval’

The default behavior is to use the ‘bcbei’ method, due to its superior theoretical properties.

Value

omxBootstrapEval and omxBootstrapEvalByName return the raw matrix of cvectorize’d results.
omxBootstrapEvalCov returns the covariance matrix of the cvectorize’d results. mxBootstrapEval
and mxBootstrapEvalByName return the cvectorize’d results summarized by method at quantiles
bq.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxAlgebra to create algebraic expressions inside your model and mxModel for the model object
mxEval looks inside when evaluating. mxBootstrap to create bootstrap data.

Examples

library(OpenMx)

make a unit-weighted 10-row data set of values 1 thru 10

myData = mxData(data.frame(weight=1.0, value=1:10), "raw", weight = "weight")
sum(1:10)

Model sums data$value (sum(1:10)= 55), subtracts "A", squares the result,
and tries to minimize this (achieved by setting A=55)

https://openmx.ssri.psu.edu/documentation/

mxBootstrapStdizeRAMpaths 91

testModel = mxModel (model = "testModell”, myData,

mxMatrix(name = "A", "Full”, nrow = 1, ncol = 1, values = 1, free=TRUE),
nb: filteredDataRow is an auto-generated matrix of

non-missing data from the present row.

This is placed into the "rowResults” matrix (also auto-generated)
mxAlgebra(name = "rowAlg", data.weight x filteredDataRow),

Algebra to turn the rowResults into a single number

mxAlgebra(name = "reduceAlg”, (sum(rowResults) - A)*2),

mxFitFunctionRow(

rowAlgebra = "rowAlg",

reduceAlgebra = "reduceAlg”,

dimnames = "value”

)

no need for an MxExpectation object when using mxFitFunctionRow
)

testModel = mxRun(testModel) # A is estimated at 55, with SE= 1
testBoot = mxBootstrap(testModel)
summary (testBoot) # A is estimated at 55, with SE= @

Let's compute A*2 (55%2 = 3025)
mxBootstrapEval (A*2, testBoot)

SE 25.0% 75.0%

[1,] o 3025 3025

mxBootstrapStdizeRAMpaths
Bootstrap distribution of standardized RAM path coefficients

Description

Uses the distribution of a bootstrapped RAM model’s raw parameters to create a bootstrapped esti-
mate of its standardized path coefficients.

note: Model must have already been run through mxBootstrap.

Usage

mxBootstrapStdizeRAMpaths(model, bg= c(.25, .75),
method= c('bcbci', 'quantile'), returnRaw= FALSE)

Arguments
model An MxModel that uses RAM expectation and has already been run through
mxBootstrap.
bq vector of 2 bootstrap quantiles corresponding to the lower and upper limits of
the desired confidence interval.
method One of "bebei’ or ’quantile’.
returnRaw Whether or not to return the raw bootstrapping results (Defaults to FALSE: re-

turning a dataframe summarizing the results).

92 mxBootstrapStdizeRAMpaths

Details

mxBootstrapStdizeRAMpaths applies mxStandardizeRAMpaths to each bootstrap replication, thus
creating a distribution of standardized estimates for each nonzero path coefficient.

The default bqg (bootstrap quantiles) of ¢(.25, .75) correspond to a 50% CI. This default is chosen as
many more bootstraps are required to accurately estimate more extreme quantiles. For a 95% CI,
use bg=c(.025, .0975).

nb: ‘bebei’ stands for ‘bias-corrected bootstrap confidence interval’ To learn more about bebei and
quantile methods, see Efron (1982) and Efron and Tibshirani (1994).

note I: It is possible (though unlikely) that the number of nonzero paths (elements of the A and
S RAM matrices) may vary among bootstrap replications. This precludes a simple summary of
the standardized paths’ bootstrapping results. In this rare case, if returnRaw=TRUE, a raw list of
bootstrapping results is returned, with a warning. Otherwise an error is thrown.

note 2: mxBootstrapStdizeRAMpaths ignores sub-models. To standardize bootstrapped sub-models,
run it on the sub-models directly.

Value

If returnRaw=FALSE (default), it returns a dataframe containing, among other things, the standard-
ized path coefficients as estimated from the real data, their bootstrap SEs, and the lower and upper
limits of a bootstrap confidence interval. If returnRaw=TRUE, typically, a matrix containing the
raw bootstrap results is returned; this matrix has one column per non-zero path coefficient, and one
row for each successfully converged bootstrap replication or, if the number of paths varies between
bootstraps, a raw list of results is returned.

References

Efron B. (1982). The Jackknife, the Bootstrap, and Other Resampling Plans. Philadelphia: Society
for Industrial and Applied Mathematics.

Efron B, Tibshirani RJ. (1994). An Introduction to the Bootstrap. Boca Raton: Chapman &
Hall/CRC.
See Also

mxBootstrap(), mxStandardizeRAMpaths(), mxBootstrapEval, mxSummary

Examples

require(OpenMx)
data(myFADataRaw)
manifests = C("X1 n , ”X2” s IIX3" , I1X4I1 R "X51I s IIX6II)

Build and run 1-factor raw-data CFA

ml = mxModel("CFA", type="RAM", manifestVars=manifests, latentVars="F1",
Factor loadings

mxPath("F1", to = manifests, values=1),

Means and variances of F1 and manifests

mxBounds

mxPath(from="F1", arrows=2, free=FALSE, values=1), # fix var F1
mxPath("one"”, to= "F1", free= FALSE, values = @), # fix mean F1

Freely-estimate means and residual variances of manifests
mxPath(from = manifests, arrows=2, free=TRUE, values=1),
mxPath("one"”, to= manifests, values = 1),

mxData(myFADataRaw, type="raw")
)

ml = mxRun(m1)
set.seed(170505) # Desirable for reproducibility

= 1. Bootstrap the model =

* =

m1_booted = mxBootstrap(ml)

2. Estimate and accumulate a distribution of =
standardized values from each bootstrap. =

ETRE T

tmp = mxBootstrapStdizeRAMpaths(m1_booted)

@1
@o

name label matrix row col Std.Value Boot.SE 25.0%
1 CFA.A[1,7] NA A x1 F1 0.8049842 0.01583737 0.7899938
2 CFA.A[2,7] NA A x2 F1 0.7935255 0.01373320 0.7865666
3 CFA.A[3,7] NA A x3 F1 0.7772050 0.01629684 0.7698374
4 CFA.A[4,7] NA A x4 F1 0.8248493 0.01315534 0.8150299
5 CFA.A[5,7] NA A x5 F1 0.7995083 0.01479210 0.7869158
6 CFA.A[6,7] NA A x6 F1 0.8126734 0.01527586 0.8012809
7 CFA.S[1,1] NA S x1 x1 0.3520004 0.02546392 0.3399556
8 CFA.S[2,2] NA S x2 x2 0.3703173 ©0.02171159 0.3526899
9 CFA.S[3,3] NA S x3 x3 0.3959524 0.02529583 0.3746547
10 CFA.S[4,4] NA S x4 x4 0.3196237 0.02163979 0.3025384
11 CFA.S[5,5] NA S x5 x5 0.3607865 0.02364008 0.3507206
12 CFA.S[6,6] NA S x6 x6 0.3395619 0.02476480 0.3245124
13 CFA.S[7,7] NA S F1 F1 1.0000000 0.00000000 1.0000000
14 CFA.M[1,1] NA M 1T x1 2.9950397 0.08745209 2.9368758
15 CFA.M[1,2] NA M 1 x2 2.9775235 0.07719970 2.9109289
16 CFA.M[1,3] NA M 1 x3 3.0133665 0.08645522 2.9598062
17 CFA.M[1,4] NA M 1 x4 3.0505604 0.08210810 2.9952130
18 CFA.M[1,5] NA M 1 x5 2.9776983 0.07973619 2.9362410
19 CFA.M[1,6] NA M 1 x6 2.9830050 0.07632118 2.9360469

75.0%

.8124311
. 8045558
.7907878
.8351416
.8057788
.8218805
.3759097
.3813130
.4073505
.3357263
.3807635
.3579489
. 0000000
.0430917
.0197492
.0779683
.1103674
.0311999
.0416504

93

mxBounds Create MxBounds Object

94 mxBounds

Description

This function creates a new MxBounds object.

Usage

mxBounds (parameters, min = NA, max = NA)

Arguments
parameters A character vector indicating the names of the parameters on which to apply
bounds.
min A numeric value for the lower bound. NA means use default value.
max A numeric value for the upper bound. NA means use default value.
Details

Creates a set of boundaries or limits for a parameter or set of parameters. Parameters may be any
free parameter or parameters from an MxMatrix object. Parameters may be referenced either by
name or by referring to their position in the ’spec’ matrix of an MxMatrix object.

Minima and maxima may be specified as scalar numeric values.

Value
Returns a new MxBounds object. If used as an argument in an MxModel object, the parameters
referenced in the ’parameters’ argument must also be included prior to optimization.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

MxBounds for the S4 class created by mxBounds. MxMatrix and mxMatrix for free parameter
specification. More information about the OpenMx package may be found here.

Examples

#Create lower and upper bounds for parameters 'A' and 'B'
bounds <- mxBounds(c('A', 'B'), 3, 5)

#Create a lower bound of zero for a set of variance parameters
varianceBounds <- mxBounds(c('Var1l', 'Var2', 'Var3'), 0)

https://openmx.ssri.psu.edu/documentation/

MxBounds-class 95

MxBounds-class MxBounds Class

Description

MxBounds is an S4 class. New instances of this class can be created using the function mxBounds.

Details

The MxBounds class has the following slots:

min - The lower bound
max - The upper bound
parameters - The vector of parameter names

The *min’ and *max’ slots hold scalar numeric values for the lower and upper bounds on the list of
parameters, respectively.

Parameters may be any free parameter or parameters from an MxMatrix object. Parameters may be
referenced either by name or by referring to their position in the ’spec’ matrix of an MxMatrix ob-
ject. To affect an estimation or optimization, an MxBounds object must be included in an MxModel
object with all referenced MxAlgebra and MxMatrix objects.

Slots may be referenced with the $ symbol. See the documentation for Classes and the examples in
the mxBounds document for more information.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxBounds for the function that creates MxBounds objects. MxMatrix and mxMatrix for free pa-
rameter specification. More information about the OpenMx package may be found here.

MxCharOrList-class A character, list or NULL

Description

A character, list or NULL

https://openmx.ssri.psu.edu/documentation/

96 mxCheckldentification

MxCharOrLogical-class A character or logical

Description

A character or logical

MxCharOrNumber-class A character or integer

Description

A character or integer

mxCheckIdentification Check that a model is locally identified

Description

Use the dimension of the null space of the Jacobian to determine whether or not a model is identified
local to its current parameter values. The output is a list of the the identification status, the Jacobian,
and which parameters are not identified.

Usage
mxCheckIdentification(model, details=TRUE)

Arguments
model A MxModel object or list of MxModel objects.
details logical.

Details

The mxCheckldentification function is used to check that a model is identified. That is, the function
will tell you if the model has a unique solution in parameter space. The function is most useful when
applied to either (a) a model that has been run and had some NA standard errors, or (b) a model that
has not been run but has reasonable starting values. In the former situation, mxCheckIdentification
is used as a diagnostic after a problem was indicated. In the latter situation, mxCheckIdentification
is used as a sanity check.

The method uses the Jacobian of the model expected means and the unique elements of the expected
covariance matrix with respect to the free parameters. It is the first derivative of the mapping
between the free parameters and the sufficient statistics for the Normal distribution. The method

mxCheckldentification 97

does not depend on data, but does depend on the current values of the free parameters. Thus, it
only provides local identification, not global identification. You might get different answers about
model identification depending on the free parameter values. Because the method does not depend
on data, the model still could be empirically unidentified due to missing data.

The Jacobian is evaluated numerically and generally takes a few seconds, but much less than a
minute.

The identification may not be accurate for models using definition variables. Currently, only the
first row of the definition variable is evaluated.

Model identification should be accurate for models with linear or nonlinear equality and inequality
constraints. When there are constraints, mxChecklIdentification uses the Jacobian of the summary
statistics with respect to the free parameters and the Jacobian of the summary statistics with respect
to the constraints. The combined extended Jacobian must have rank equal to the number of free
parameters for the model to be identified. So, a model can be identified with constraints that is not
identified without constraints.

When TRUE, the ’details’ argument provides the names of the non-identified parameters. Other-
wise, only the status and Jacobian are returned.

Value

A named list with components

status logical. TRUE if the model is locally identified; otherwise FALSE.
jacobian matrix. The numerically evaluated Jacobian.

non_identified_parameters vector. The free parameter names that are not identified

References

Bekker, P.A., Merckens, A., Wansbeek, T.J. (1994). Identification, Equivalent Models and Com-
puter Algebra. Academic Press: Orlando, FL.

Bollen, K. A. & Bauldry, S. (2010). Model Identification and Computer Algebra. Sociological
Methods & Research, 39, p. 127-156.

See Also

mxModel

Examples

require(OpenMx)

data(demoOneFactor)

manifests <- names(demoOneFactor)

latents <- "G1”

model2 <- mxModel(model="One Factor”, type="RAM",
manifestVars = manifests,
latentVars = latents,
mxPath(from = latents[1], to=manifests[1:5]),
mxPath(from = manifests, arrows = 2, lbound=1e-6),

98 mxCI

mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov"”, numObs=500)

)
fit2 <- mxRun(model?2)

id2 <- mxCheckIdentification(fit2)
id2$status
The model is locally identified

Build a model from the solution of the previous one

but now the factor variance is also free

model2n <- mxModel(fit2, name="Non Identified Two Factor”,
mxPath(from=latents[1], arrows=2, free=TRUE, values=1)

)

mid2 <- mxCheckIdentification(model2n)
mid2$non_identified_parameters

The factor loadings and factor variance
are not identified.

mxCI Create mxCI Object

Description

This function creates a new MxCI object, which allows estimation of likelihood-based confidence
intervals in a model (note: to estimate SEs around arbitrary objects, see mxSE)

Usage
mxCI(reference, interval = 0.95, type=c("both”, "lower"”, "upper"”), ..., boundAdj=TRUE)
Arguments
reference A character vector of free parameters, mxMatrices, mxMatrix elements and mx-
Algebras on which confidence intervals are to be estimated, listed by name.
interval A scalar numeric value indicating the confidence interval to be estimated. Must
be between 0 and 1. Defaults to 0.95.
type A character string indicating whether the upper, lower or both confidence limits
are returned. Defaults to "both".
Not used. Forces remaining arguments to be specified by name.
boundAdj Whether to correct the likelihood-based confidence intervals for a lower or upper

bound.

mxCI 99

Details

The mxCI function creates MxCI objects, which can be used as arguments in MxModel objects.
When models containing MxCI objects are optimized using mxRun with the ‘intervals’ argument
set to TRUE, likelihood-based confidence intervals are returned. The likelihood-based confidence
intervals calculated by MxCI objects are symmetric with respect to the change in likelihood in
either direction, and are not necessarily symmetric around the parameter estimate. Estimation of
confidence intervals requires both that an MxCI object be included in the model and that the ‘inter-
vals’ argument of the mxRun function is set to TRUE. When estimated, confidence intervals can be
accessed in the model output at $output$confidencelntervals or by using summary on a fitted
MxModel object.

A typical use case is when a model includes non-linear constraints, and hence, standard errors are
not available. In all cases, a two-sided hypothesis test is assumed. Therefore, the upper bound will
exclude 2.5% (for interval=0.95) even though only one bound is requested. To obtain a one-sided
CI for a one-sided hypothesis test, interval=0.90 will obtain a 95% confidence interval.

When a confidence interval is requested for a free parameter (not an algebra) constrained by a lower
bound or an upper bound (but not both) and boundAdj=TRUE then the Wu & Neale (2012) correction
is used. This improves the accuracy of the confidence interval when the parameter is estimated close
to the bound. For example, this correction will be activated when a variance with a lower bound of
105 and no upper bound that is estimated close to the bound. The sample size, or more precisely
effective sample size for that particular parameter, will determine how close the variance needs to
be to the bound at 10~ to activate the correction.

The likelihood-based confidence intervals returned using MxCI are obtained by increasing or de-
creasing the value of each parameter until the -2 log likelihood of the model increases by an amount
corresponding to the requested interval. The confidence limit specified by the ‘interval’ argument is
transformed into a corresponding difference in the model -2 log likelihood based on the likelihood
ratio test. Thus, a requested confidence interval for a parameter will first determine the correspond-
ing quantile from the chi-squared distribution with one degree of freedom (a value of 3.841459
when a 95 percent confidence interval is requested). That quantile will be populated into either the
‘lowerdelta’ slot, the ‘upperdelta’ slot, or both in the output MxCI object.

Estimation of likelihood-based confidence intervals begins after optimization has been completed,
with each parameter moved in the direction(s) specified in the ‘type’ argument until the specified
increase in -2 log likelihood is reached. All other free parameters are left free for this stage of
optimization. This process repeats until all confidence intervals have been calculated. The calcu-
lation of likelihood-based confidence intervals can be computationally intensive, and may add a
significant amount of time to model estimation when many confidence intervals are requested.

Multiple parameters, MxMatrices and MxAlgebras may be listed in the ‘reference’ argument. In-
dividual elements of MxMatrices and MxAlgebras may be listed as well, using the syntax “ma-
trix[row,col]” (see Extract for more information). Only scalar numeric values for the ‘interval’
argument are supported. Users requesting different confidence ranges for different parameters must
use separate mxCI statements. MxModel objects can hold multiple MxCI objects, but only one
confidence interval may be requested per named-entity.

Confidence interval estimation may result in model non-convergence at the confidence limit. Sep-
arate optimizer messages may be passed for each confidence limit. This has no impact on the
parameter estimates themselves, but may indicate a problem with the referenced confidence limit.
Model non-convergence for a particular confidence limit may indicate parameter interdependence
or the influence of a parameter boundary.

100 mxCI

These error messages and their meanings are listed in the help for mxSummary

The validity of a confidence limit can be checked by running a model with the appropriate parameter
fixed at the confidence limit in question. If the confidence limit is valid, the -2 log likelihoods of
these two models should differ by the specified chi-squared criterion (as set using the ‘lowerdelta’
or ‘upperdelta’ slots in the MxCI object (you can choose which of these to set via the type parameter
of mxCI).

Value

Returns a new MxCI object. If used as an argument in an MxModel object, the parameters, MxMa-
trices and MxAlgebras listed in the "reference’ argument must also be included prior to optimization.

References
The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.
Additional support for mxCI() can be found on the OpenMx wiki at http://openmx.ssri.psu.edu/wiki.

Neale, M. C. & Miller M. B. (1997). The use of likelihood based confidence intervals in genetic
models. Behavior Genetics, 27(2), 113-120.

Pek, J. & Wu, H. (2015). Profile likelihood-based confidence intervals and regions for structural
equation models. Psychometrika, 80(4), 1123-1145.

Wu, H. & Neale, M. C. (2012). Adjusted confidence intervals for a bounded parameter. Behavior
genetics, 42(6), 886-898.

See Also

mxSE for computing SEs around arbitrary objects. mxComputeConfidenceInterval is the internal
compute plan that implements the algorithm. MxMatrix and mxMatrix for free parameter specifi-
cation. MxCI for the S4 class created by mxCI. More information about the OpenMx package may
be found here.

Examples

library(OpenMx)

generate data

covariance <- matrix(c(1.0, 0.5, 0.5, 1.0),
nrow=2,
dimnames=list(c("a", "b"), c("a", "b")))

data <- mxData(covariance, "cov"”, numObs=100)

create an expected covariance matrix
expect <- mxMatrix("Symm", 2, 2,

free=TRUE,
values=c(1, .5, 1),
labels=c("var1"”, "cov12", "var2"),

name="expectedCov")

request 95 percent confidence intervals
ci <= mxCI(c("varl”, "cov12", "var2"))

https://openmx.ssri.psu.edu/documentation/

MxClI-class 101

specify the model

model <- mxModel(model="Confidence Interval Example”,
data, expect, ci,
mxExpectationNormal ("expectedCov"”, dimnames=c("a", "b")),
mxFitFunctionML())

run the model
results <- mxRun(model, intervals=TRUE)

view confidence intervals
print(summary(results)$CI)

view all results
summary(results)

remove a specific mxCI from a model
model <- mxModel(model, remove=TRUE, model$intervals[['cov12']])
model$intervals

remove all mxCI from a model
model <- mxModel(model, remove=TRUE, model$intervals)
model$intervals

MxCI-class MxCI Class

Description
MxCI is an S4 class. An MxCI object is a named entity. New instances of this class can be created
using the function mxCI. MxCI objects may be used as arguments in the mxModel function.
Details

The MxCI class has the following slots:

reference - The name of the object
lowerdelta - Either a matrix or a data frame
upperdelta - A vector for means, or NA if missing

The reference slot contains a character vector of named free parameters, MxMatrices and MxAlge-
bras on which confidence intervals are desired. Individual elements of MxMatrices and MxAlgebras
may be listed as well, using the syntax “matrix[row,col]” (see Extract for more information).

The lowerdelta and upperdelta slots give the changes in likelihoods used to define the confidence
interval. The upper bound of the likelihood-based confidence interval is estimated by increasing the

102

mxCompare

parameter estimate, leaving all other parameters free, until the model -2 log likelihood increased
by ‘upperdelta’. The lower bound of the confidence interval is estimated by decreasing the pa-
rameter estimate, leaving all other parameters free, until the model -2 log likelihood increased by

‘lowerdata’.

Likelihood-based confidence intervals may be specified by including one or more MxCI objects
in an MxModel object. Estimation of confidence intervals requires model optimization using the
mxRun function with the ‘intervals’ argument set to TRUE. The calculation of likelihood-based
confidence intervals can be computationally intensive, and may add a significant amount of time to
model estimation when many confidence intervals are requested.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxClI for creating MxCI objects. More information about the OpenMx package may be found here.

mxCompare

Likelihood ratio test

Description

Compare the fit of one or more models to that of a reference (base) model or set of reference models.

Usage

mxCompare(base, comparison, ..., all = FALSE,
boot=FALSE, replications=400, previousRun=NULL, checkHess=FALSE)
mxCompareMatrix(models,
diag=c('minus2LL"', 'ep', 'df"', 'AIC"),

stat=c('p’,

"diffLL"', 'diffdf'), ...,

boot=FALSE, replications=400, previousRun=NULL,
checkHess=FALSE, wholeTable=FALSE)

Arguments

base
comparison
models
diag

stat

all

A MxModel object or list of MxModel objects.
A MxModel object or list of MxModel objects.
A MxModel object or list of MxModel objects.
statistic used for diagonal entries

statistic used for off-diagonal entries

Not used.

Boolean. Whether to compare all base models with all comparison models.
Defaults to FALSE.

https://openmx.ssri.psu.edu/documentation/

mxCompare 103

boot Whether to use the bootstrap distribution to compute the p-value.

replications How many replications to use to approximate the bootstrap distribution.

previousRun Results to re-use from a previous bootstrap.

checkHess Whether to approximate the Hessian in each replication

wholeTable Return the whole table instead of a matrix shaped summary
Details

mxCompare is used to compare the fit of one or more mxModels to one or more comparison models.
mxCompareMatrix compares all the models provided against each other.

Model comparisons are made by subtracting the fit statistics for the comparison model from the fit
statistics for the base model. Raw fit statistics of each ‘base’ model are also listed in the output
table.

The fit statistics compared depend on the kinds of models compared. Models fit with maximum
likelihood are compared based on their minus two log likelihood values. Under certain regularity
conditions, the difference in minus two log likelihood values from nested models is chi-squared
distributed and forms a likelihood ratio test statistic. Models fit with weighted least squares are
compared based on their Satorra-Bentler (2001) scaled difference chi-squared test statistics. Under
full weighted least squares, the Satorra-Bentler chi-squared value is equal to the difference in the
model chi-squared values; however, for unweighted and diagonally weighted least squares, the two
are no longer equal. Satorra and Bentler (2001) showed that that their test statistic behaved well
under a variety of conditions, including small sample sizes. By contrast the much simpler difference
in the chi-squared statistics only behaved well under large sample sizes (e.g., greater than or equal
to 300 rows of data).

Specific to weighted least squares, researchers sometimes use mean-adjusted chi-squared statis-
tics and mean-and-variance scaled chi-squared statistics. Some programs call these WLSM and
WLSMYV statistics. In some cases, it is fine to evaluate the total fit of a model using adjusted and
scaled chi-squared statistics. However, never, ever, ever, ..., ever take differences in mean-adjusted
chi-squared statistics, and use them for nested model comparisons. Similarly, never, ever, ever,
..., ever, ever take differences in mean-and-variance scaled chi-squared statistics, and use them for
nested model comparisons. The differences in these adjusted and scaled chi-squared statistics are
not chi-squared distributed and do not form a valid basis for model comparison. So, just don’t do it.

Although not always checked by mxCompare, you should never compare models with different
data sets or that use different variables from the same data set. mxCompare might not stop you
from doing this, so be thoughtful when comparing models. Make sure your models are nested and
use the same data. Weighted least squares models are one case of comparing different data sets
that requires particular care. When comparing WLS models, make sure you are using the same
exogenous covariates for all compared models. Because WLS is a multi-stage estimation approach,
exogenous covariates residualize and change the data fitted in WLS. Consequently, WLS models
with different exogenous covariates actually have different data. By contrast, maximum likelihood
models with different exogenous covariates still use the same data and are valid to compare.

The mxCompare function makes an effort to only make valid comparisons. If a comparison is made
where the comparison model has a higher minus 2 log likelihood (-2LL) than the base model, then
the difference in their -2LLs will be negative. P-values for likelihood ratio tests will not be reported
when either the -2LL or degrees of freedom for the comparison are negative. To ensure that the
differences between models are positive and yield p-values for likelihood ratio tests, models listed

104 mxCompare

in the ‘base’ argument must be more saturated (i.e., more estimated parameters and fewer degrees
of freedom) than models listed in the ‘comparison’ argument. For mxCompareMatrix only the
comparisons that make sense will be included.

When multiple models are included in both the ‘base’ and ‘comparison’ arguments, then compar-
isons are made between the two lists of models based on the value of the ‘all’ argument. If ‘all’
is set to FALSE (default), then the first model in the ‘base’ list is compared to the first model in
the ‘comparison’ list, second with second, and so on. If there are an unequal number of ‘base’ and
‘comparison’ models, then the shorter list of models is repeated to match the length of the longer
list. For example, comparing base models ‘B1’ and ‘B2’ with comparison models ‘C1’, ‘C2’ and
‘C3’ will yield three comparisons: ‘B1’ with ‘C1’, ‘B2’ with ‘C2’, and ‘B1’ with ‘C3’. Each of
those comparisons are prefaced by a comparison between the base model and a missing comparison
model to present the fit of the base model.

If “all’ is set to TRUE, all possible comparisons between base and comparison models are made,
and one entry is made for each base model. All comparisons involving the first model in ‘base’ are
made first, followed by all comparisons with the second ‘base’ model, and so on. When there are
multiple models in either the ‘base’ or ‘comparison’ arguments but not both, then the ‘all” argument
does not affect the set of comparisons made.

The following columns appear in the output for maximum likelihood comparisons:

base Name of the base model.
comparison Name of the comparison model. Is <NA> for the first
ep Estimated parameters of the comparison model.

minus2LL. Minus 2*log-likelihood of the comparison model. If the comparison model is <NA>,
then the minus 2*log-likelihood of the base model is given.

df Degrees in freedom of the comparison model. If the comparison model is <NA>, then the
degrees of freedom of the base model is given.

AIC Akaike’s Information Criterion for the comparison model. If the comparison model is <NA>,
then the AIC of the base model is given.

diffLL. Difference in minus 2*log-likelihoods of the base and comparison models. Will be positive
when base model -2LL is higher than comparison model -2LL.

diffdf Difference in degrees of freedoms of the base and comparison models. Will be positive
when base model DF is lower than comparison model DF (base model estimated parameters
is higher than comparison model estimated parameters)

p P-value for likelihood ratio test based on diffLL and diffdf values.
Weighted least squares reports a similar set of columns with four substitutions:

chisq Replaces the minus2LL column. This is the comparison model’s chi-squared statistic from
Browne (1984, Equation 2.20a), accounting for some misspecification of the weight matrix.

AIC Although this has the same name as that in maximum likelihood, it is really a pseudo-AIC
using the comparison model chi-squared and the number of estimated parameters. It is the
chi-squared value plus two times the number of free parameters.

SBchisq Replaces the diffLL column. This is the Satorra-Bentler (2001, p. 511) scaled difference
chi-squared statisic between the base model and the comparison model. If your models use
full weighted least squares, then this will be the same as the difference between the individual

mxCompare 105

model chi-squared statistics. However, for unweighted and diagonally weighted least square,
the SB chisq will not be equal to the difference between the component model chi-squared
statistics.

p p-value for the Satorra-Bentler chi-squared statistic.

In addition to the particular columns for maximum likelihood and weighted least squares, there are
three general columns that are not printed but are accessible via the $ and [extractors.

fit The individual model fit value: m211 for maximum likelihood models, chisq for WLS models.
fitUnits The units of the fit function: "-2LL" for ML models, "r 'Wr" for WLS models.

diffFit The difference in fit values between the base and comparison models: diffLL for ML
models, SBchisq for WLS models.

mxCompare will give a p-value for any comparison in which both ‘diffLL’ and ‘diffdf’ are non-
negative. However, this p-value is based on the assumptions of the likelihood ratio test, specifically
that the two models being compared are nested. The likelihood ratio test and associated p-values
are not valid when the comparison model is not nested in the referenced base model. For a more
accurate p-value, the empirical bootstrap distribution can be computed (‘boot=TRUE’). However,
‘replications’ must be set high enough for an accurate approximation. The Monte Carlo SE of
a proportion for B replications is v/(p * (1 — p)/B), but this will be zero if p is zero, which is
nonsense. Note that a parametric-bootstrap p-value of zero must be interpreted as p < 1/B, which,
depending on B and the desired Type I error rate, may not be "statistically significant."

When ‘boot=TRUE’, the model has a default compute plan, and ‘checkHess’ is kept at FALSE then
the Hessian will not be approximated or checked. On the other hand, ‘checkHess’ is TRUE then the
Hessian will be approximated by finite differences. This procedure is of some value because it can
be informative to check whether the Hessian is positive definite (see mxComputeHessianQuality).
However, approximating the Hessian is often costly in terms of CPU time. For bootstrapping, the
parameter estimates derived from the resampled data are typically of primary interest.

note: The mxCompare function does not directly accept a digits argument, and depends on the value
of the ’digits’ option. To set the minimum number of significant digits printed, use options(’digits’
= N) (see example).

Value

Returns a new MxCompare object. If you want something more like a table of results, use as.data. frame()
on the returned MxCompare object.

See Also

mxPowerSearch; mxModel; options (use options('mxOptions’) to see all the OpenMx-specific op-
tions)

Examples

data(demoOneFactor)

manifests <- names(demoOneFactor)

latents <- "G1"

modell <- mxModel(model="One Factor”, type="RAM",
manifestVars = manifests,

106 MxCompute-class

latentVars = latents,

mxPath(from = latents, to=manifests),

mxPath(from = manifests, arrows = 2),

mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov"”, numObs = 500)

)
fit1l <- mxRun(model1)

latents <- c("G1", "G2")

model2 <- mxModel(model="One factor Rasch equated”, type="RAM",
manifestVars = manifests,
latentVars = latents,
mxPath(from = latents[1], to=manifests[1:5], labels='raschEquated'),

mxPath(from = manifests, arrows = 2),
mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
mxData(cov(demoOneFactor), type = "cov”, numObs=500)

)
fit2 <- mxRun(model2)

mxCompare(fitl, fit2) # Rasch equated is significantly worse

Vary precision (rounding) of the table
oldPrecision = as.numeric(options('digits'))
options('digits' = 1)

mxCompare(fitl, fit2)

options('digits' = oldPrecision)
MxCompare-class The MxCompare Class
Description
The MxCompare Class
Details

This is an internal class structure. You should not use it directly. Use mxCompare instead.

MxCompute-class MxCompute

Description

This is an internal class and should not be used directly.

mxComputeBootstrap 107

mxComputeBootstrap Repeatedly estimate model using resampling with replacement

Description

This is a low-level compute plan object to perform resampling with replacement.

Usage

mxComputeBootstrap(data, plan, replications=200, ...,
verbose=0L, parallel=TRUE, freeSet=NA_character_,
OK=c("OK", "OK/green"), only=NA_integer_)

Arguments
data A vector of dataset or model names.
plan The compute plan used to optimize the model for each data set.

replications The number of resampling replications. If available, replications from prior
mxBootstrap invocations will be reused.

Not used. Forces remaining arguments to be specified by name.

verbose For levels greater than 0, enables runtime diagnostics

parallel Whether to process the replications in parallel

freeSet names of matrices containing free variables

0K The set of status code that are considered successful

only When provided, only the given replication from a prior run of mxBootstrap will

be performed. See details.

Details

The ‘only’ option facilitates investigation of a single replication attempt.

Value

Output is stored in the compute object’s output slot. Specifically, model$compute$output$raw
contains a data frame with parameters in columns and replications in rows. In addition to parame-
ters, the seed, fit, and statusCode of the replication is also included.

When ‘only’ is set to a particular replications, the weight vectors (one per dataset) are also returned
in the compute object’s output slot. model$compute$output$weight is a character vector (by
dataset name) of numeric vectors (the weights). These weights can be used to recreate a model
identical to the model used in the given replication.

See Also

mxBootstrap, as.statusCode

108

mxComputeCheckpoint

mxComputeCheckpoint

Log parameters and state to disk or memory

Description

Captures the current state of the backend. When path is set, the state is written to disk in a single
row. When toReturn is set, the state is recorded in memory and returned after mxRun.

Usage

mxComputeCheckpoint(
what = NULL,
path =
append =
header = TRUE,
toReturn = FALSE,
parameters = TRUE,
loopIndices = TRUE,
fit = TRUE,
counters = TRUE,
status = TRUE,
standardErrors =
gradient = FALSE,
vcov = FALSE,
vcovFilter = c(),
sampleSize = FALSE,
vcovWLS = FALSE,
useVcovFilter =

NULL,
FALSE,

Arguments

what

FALSE,

FALSE

a character vector of algebra names to include in each checkpoint

Not used. Forces remaining arguments to be specified by name

path
append

a character vector of where to write the checkpoint file

preserved and checkpoints are appended.

header

toReturn
is run

parameters
loopIndices
fit

logical. Whether to include the parameter vector
logical. Whether to include the loop indices

logical. Whether to include the fit value

if FALSE, truncates the checkpoint file upon open. If TRUE, existing data is

whether to write the header that describes the content of each column

logical. Whether to store the checkpoint in memory and return it after the model

mxComputeConfidencelnterval 109

counters logical. Whether to include counters (number of evaluations and iterations)
status logical. Whether to include the status code

standardErrors logical. Whether to include the standard errors

gradient logical. Whether to include the gradients

vcov logical. Whether to include the vcov in half-vectorized order

vcovFilter character vector. Vector of parameters indicating which parameter covariances
to include. Only the variance is included for those parameters not mentioned.

sampleSize logical. Whether to include the sample size of the mxData. [Experimental]

vcovWLS logical. Whether to include the vcov from WLS residualizing regressions in

half-vectorized order
useVcovFilter logical. Whether to use the vcovFilter (TRUE) or include all entries (FALSE)

See Also

mxComputelLoadData, mxComputelLoadMatrix, mxComputelLoadContext, mxComputelLoop

Other model state: mxRestore(), mxSave()

Examples

library(OpenMx)

ml <- mxModel(
"poly22", # Egn 22 from Tsallis & Stariolo (1996)
mxMatrix(type='Full', values=runif(4, min=-1e6, max=1e6),
ncol=1, nrow=4, free=TRUE, name='x'),
mxAlgebra(sum((x*x-8)*2) + 5%sum(x) + 57.3276, name="fit"),
mxFitFunctionAlgebra('fit'))

plan <- mxComputelLoop(list(
mxComputeSetOriginalStarts(),
mxComputeSimAnnealing(method="tsallis1996",
control=list(tempEnd=1)),
mxComputeCheckpoint(path = "result.log")),
i=1:4)

ml <- mxRun(mxModel(m1, plan)) # see the file 'result.log'

mxComputeConfidencelnterval
Find likelihood-based confidence intervals

Description

There are various equivalent ways to pose the optimization problems required to estimate confi-
dence intervals. Most accurate solutions are achieved when the problem is posed using non-linear
constraints. However, the available optimizers (CSOLNP, SLSQP, and NPSOL) often have diffi-
culty with non-linear constraints.

110 mxComputeDefault

Usage
mxComputeConfidencelInterval(
plan,
freeSet = NA_character_,
verbose = 0L,
engine = NULL,
fitfunction = "fitfunction”,
tolerance = NA_real_,
constraintType = "none”
)
Arguments
plan compute plan to optimize the model
Not used. Forces remaining arguments to be specified by name.
freeSet names of matrices containing free variables
verbose integer. Level of run-time diagnostic output. Set to zero to disable
engine [Deprecated]
fitfunction the name of the deviance function
tolerance [Deprecated]

constraintType one of c('ineq’, 'none’)

References

Neale, M. C. & Miller M. B. (1997). The use of likelihood based confidence intervals in genetic
models. Behavior Genetics, 27(2), 113-120.

Pek, J. & Wu, H. (2015). Profile likelihood-based confidence intervals and regions for structural
equation models. Psychometrika, 80(4), 1123-1145.

Wu, H. & Neale, M. C. (2012). Adjusted confidence intervals for a bounded parameter. Behavior
genetics, 42(6), 886-898.

mxComputeDefault Default compute plan

Description

This is an empty placeholder for the default compute plan. To create an actual plan, use omxDe-
faultComputePlan.

Usage

mxComputeDefault(freeSet = NA_character_)

mxComputeEM 111
Arguments
freeSet names of matrices containing free variables
mxComputeEM Fit a model using DLR’s (1977) Expectation-Maximization (EM) al-
gorithm
Description

The EM algorithm constitutes the following steps: Start with an initial parameter vector. Predict the
missing data to form a completed data model. Optimize the completed data model to obtain a new
parameter vector. Repeat these steps until convergence criteria are met.

Usage

mxComputeEM(

expectation = NULL,

predict = NA_character_,
mstep,
observedFit = "fitfunction”,
maxIter = 500L,
tolerance = 1e-09,
verbose = 0L,
freeSet = NA_character_,
accel = "varadhan2008",
information = NA_character_,
infoArgs = list(),
estep = NULL
)
Arguments
expectation a vector of expectation names [Deprecated]
predict what to predict from the observed data [Deprecated]
mstep a compute plan to optimize the completed data model
observedFit the name of the observed data fit function (defaults to "fitfunction™)
Not used. Forces remaining arguments to be specified by name.
maxIter maximum number of iterations
tolerance optimization is considered converged when the maximum relative change in fit
is less than tolerance
verbose integer. Level of run-time diagnostic output. Set to zero to disable
freeSet names of matrices containing free variables
accel name of acceleration method ("varadhan2008" or "ramsay1975")

112 mxComputeEM

information name of information matrix approximation method

infoArgs arguments to control the information matrix method

estep a compute plan to perform the expectation step
Details

The arguments to this function have evolved. The old style mxComputeEM(e, p,mstep=m) is equiv-
alent to the new style mxComputeEM(estep=mxComputeOnce(e,p), mstep=m). This change allows
the API to more closely match the literature on the E-M method. You might use mxAlgebrac(.. .,
recompute="'onDemand"') to contain the results of the E-step and then cause this algebra to be
recomputed using mxComputeOnce.

This compute plan does not work with any and all expectations. It requires a special kind of expec-
tation that can predict its missing data to create a completed data model.

The EM algorithm does not produce a parameter covariance matrix for standard errors. The Oakes
(1999) direct method and S-EM, an implementation of Meng & Rubin (1991), are included.

Ramsay (1975) was recommended in Bock, Gibbons, & Muraki (1988).

References

Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-information item factor analysis. Applied
Psychological Measurement, 6(4), 431-444.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1-38.

Meng, X.-L. & Rubin, D. B. (1991). Using EM to obtain asymptotic variance-covariance matrices:
The SEM algorithm. Journal of the American Statistical Association, 86 (416), 899-909.

Oakes, D. (1999). Direct calculation of the information matrix via the EM algorithm. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 61(2), 479-482.

Ramsay, J. O. (1975). Solving implicit equations in psychometric data analysis. Psychometrika, 40
(3), 337-360.

Varadhan, R. & Roland, C. (2008). Simple and globally convergent methods for accelerating the
convergence of any EM algorithm. Scandinavian Journal of Statistics, 35, 335-353.

See Also

MxAlgebra, mxComputeOnce

Examples

library(OpenMx)
set.seed(190127)

N <- 200

x <= matrix(c(rnorm(N/2,0,1),
rnorm(N/2,3,1)),ncol=1,dimnames=1ist (NULL, "x"))

datadmx <- mxData(observed=x,type="raw")

class1 <- mxModel("Class1"”,

mxComputeGenerateData 113

mxMatrix(type="Full”, nrow=1,ncol=1,free=TRUE,values=0,name="Mu"),
mxMatrix (type="Full” nrow=1,ncol=1,free=TRUE,values=4,name="Sigma"),
mxExpectationNormal (covariance="Sigma",means="Mu",dimnames="x"),
mxFitFunctionML(vector=TRUE))

class2 <- mxRename(class1, "Class2")

mm <- mxModel(
"Mixture”, datad4mx, classl, class2,
mxAlgebra((1-Posteriors) * Class1.fitfunction, name="PL1"),
mxAlgebra(Posteriors * Class2.fitfunction, name="PL2"),
mxAlgebra(PL1 + PL2, name="PL"),
mxAlgebra(PL2 / PL, recompute='onDemand',
initial=matrix(runif(N,.4,.6), nrow=N, ncol = 1), name="Posteriors"),
mxAlgebra(-2*xsum(log(PL)), name="FF"),
mxFitFunctionAlgebra(algebra="FF"),
mxComputeEM(
estep=mxComputeOnce("Mixture.Posteriors"”),
mstep=mxComputeGradientDescent (fitfunction="Mixture.fitfunction")))

mm <- mxOption(mm, "Max minutes”, 1/20) # remove this line to find optimum
mmfit <- mxRun(mm)
summary (mmfit)

mxComputeGenerateData Generate data

Description

Generate data specified by the model expectations.

Usage

mxComputeGenerateData(expectation = "expectation”)
Arguments

expectation a character vector of expectations to generate data for

mxComputeGradientDescent
Optimize parameters using a gradient descent optimizer

Description

This optimizer does not require analytic derivatives of the fit function. The fully open-source CRAN
version of OpenMx offers 2 choices, CSOLNP and SLSQP (from the NLOPT collection). The
OpenMx Team’s version of OpenMx offers the choice of three optimizers: CSOLNP, SLSQP, and
NPSOL.

114 mxComputeGradientDescent

Usage

mxComputeGradientDescent(
freeSet = NA_character_,
engine = NULL,
fitfunction = "fitfunction”,
verbose = 0L,
tolerance = NA_real_,
useGradient = deprecated(),
warmStart = NULL,
nudgeZeroStarts = mxOption(NULL, "Nudge zero starts"),
maxMajorIter = NULL,
gradientAlgo = deprecated(),
gradientIterations = deprecated(),
gradientStepSize = deprecated()

)
Arguments
freeSet names of matrices containing free parameters.
Not used. Forces remaining arguments to be specified by name.
engine specific ’"CSOLNP’, "SLSQP’, or 'NPSOL’
fitfunction name of the fitfunction (defaults to ’fitfunction’)
verbose integer. Level of run-time diagnostic output. Set to zero to disable
tolerance how close to the optimum is close enough (also known as the optimality toler-

ance)
useGradient [Soft-deprecated]

warmStart a Cholesky factored Hessian to use as the NPSOL Hessian starting value (pre-
conditioner)
nudgeZeroStarts
whether to nudge any zero starting values prior to optimization (default TRUE)
maxMajorIter maximum number of major iterations
gradientAlgo [Soft-deprecated]
gradientIterations
[Soft-deprecated]
gradientStepSize
[Soft-deprecated]

Details
All three optimizers can use analytic gradients, and only NPSOL uses warmStart. To customize
more options, see mxOption.

References

Luenberger, D. G. & Ye, Y. (2008). Linear and nonlinear programming. Springer.

mxComputeHessianQuality 115

Examples

data(demoOneFactor)
factorModel <- mxModel(name ="One Factor”,
mxMatrix(type="Full”, nrow=5, ncol=1, free=FALSE, values=0.2, name="A"),
mxMatrix(type="Symm", nrow=1, ncol=1, free=FALSE, values=1, name="L"),
mxMatrix(type="Diag"”, nrow=5, ncol=5, free=TRUE, values=1, name="U"),
mxAlgebra(expression=A %*% L %*% t(A) + U, name="R"),
mxExpectationNormal (covariance="R", dimnames=names(demoOneFactor)),
mxFitFunctionML(),
mxData(observed=cov(demoOneFactor), type="cov", numObs=500),
mxComputeSequence(steps=list(
mxComputeGradientDescent(),
mxComputeNumericDeriv(),
mxComputeStandardError(),
mxComputeHessianQuality()
)))
factorModelFit <- mxRun(factorModel)
factorModelFit$output$conditionNumber # 29.5

mxComputeHessianQuality
Compute the quality of the Hessian

Description

Tests whether the Hessian is positive definite (model$output$infoDefinite) and, if so, computes the
approximate condition number (model$output$conditionNumber). See Luenberger & Ye (2008)
Second Order Test (p. 190) and Condition Number (p. 239).

Usage
mxComputeHessianQuality(freeSet = NA_character_, ..., verbose = 0L)
Arguments
freeSet names of matrices containing free variables
Not used. Forces remaining arguments to be specified by name.
verbose integer. Level of run-time diagnostic output. Set to zero to disable
Details

The condition number is approximated by norm(H) * norm(H ~!) where H is the Hessian. The
norm is either the 1- or infinity-norm (both obtain the same result due to symmetry).

References

Luenberger, D. G. & Ye, Y. (2008). Linear and nonlinear programming. Springer.

116 mxComputeJacobian

mxComputelterate Repeatedly invoke a series of compute objects until change is less than
tolerance

Description

One step (typically the last) must compute the fit or maxAbsChange.

Usage

mxComputeIterate(
steps,
maxIter = 500L,
tolerance = 1e-09,
verbose = 0L,
freeSet = NA_character_,
maxDuration = as.numeric(NA)

)
Arguments
steps a list of compute objects
Not used. Forces remaining arguments to be specified by name.
maxIter the maximum number of iterations
tolerance iterates until maximum relative change is less than tolerance
verbose integer. Level of run-time diagnostic output. Set to zero to disable
freeSet Names of matrices containing free variables.
maxDuration the maximum amount of time (in seconds) to iterate
mxComputeJacobian Numerically estimate the Jacobian with respect to free parameters
Description

When algebra names are given, all algebras must belong to the same model.

When expectations are given, the Jacobian is taken with respect to the manifest model. The manifest
model excludes any latent variables or processes. For RAM and LISREL models, the manifest
model contains only the manifest variables with free means, covariance, and thresholds. Ordinal
manifest variables are standardized.

Usage

mxComputeJacobian(freeSet=NA_character_, ..., of = "expectation”,
defvar.row=as.integer(NA), data='data')

mxComputeLoadContext 117
Arguments
freeSet names of matrices containing free variables
Not used. Forces remaining arguments to be specified by name.
of a character vector of expectations or algebra names
defvar.row A row index. Which row to load for definition variables.
data From which data to load definition variables.
See Also
omxManifestModelByParameterJacobian, mxGetExpected
mxComputeLoadContext Load contextual data to supplement checkpoint
Description
[Experimental]
Usage
mxComputeLoadContext (
method = c("csv"),
path = c(),
column,
sep = n n s
verbose = 0L,
header = TRUE,
col.names = NULL
)
Arguments
method name of the conduit used to load the columns.
path the path to the file containing the data
column a character vector. The column names to log.
Not used. Forces remaining arguments to be specified by name.
sep the field separator character. Values on each line of the file are separated by this
character.
verbose integer. Level of run-time diagnostic output. Set to zero to disable
header logical. Whether the first row contains column headers.
col.names character vector. Column names

118 mxComputeLoadData

Details

Currently, this only supports comma separated value format and no row names. If header=TRUE
and col.names are provided, the col. names take precedence. If header=FALSE and no col.names
are provided then the column names consist of the file name and column offset.

An originalDataIsIndexOne option is not offered. You’ll need to add an extra line at the start on
your file if you wish to make use of originalDataIsIndexOne in mxComputeload*.

See Also

mxComputeCheckpoint, mxComputeLoadData, mxComputeLoadMatrix

mxComputelLoadData Load columns into an MxData object

Description

[Experimental]

Usage

mxComputelLoadData(
dest,
column,
method = c("csv", "data.frame"),
path = c(),
originalDatalsIndexOne = FALSE,
byrow = TRUE,
row.names = c(),
col.names = c(),
skip.rows = 0,
skip.cols = 0,
verbose = 0L,
cacheSize = 100L,
checkpointMetadata = TRUE,
na.strings = c(”"NA"),
observed = NULL,
rowFilter = c()

)

Arguments
dest the name of the model where the columns will be loaded
column a character vector. The column names to replace.
method name of the conduit used to load the columns.

Not used. Forces remaining arguments to be specified by name.

mxComputeLoadData 119

path the path to the file containing the data

originalDatalIsIndexOne
logical. Whether to use the initial data for index 1

byrow logical. Whether the data columns are stored in rows.
row.names optional integer. Column containing the row names.
col.names optional integer. Row containing the column names.
skip.rows integer. Number of rows to skip before reading data.
skip.cols integer. Number of columns to skip before reading data.
verbose integer. Level of run-time diagnostic output. Set to zero to disable
cacheSize integer. How many columns to cache per scan through the data. Only used when
byrow=FALSE.
checkpointMetadata
logical. Whether to add per record metadata to the checkpoint
na.strings character vector. A vector of strings that denote a missing value.
observed data frame. The reservoir of data for method="'data. frame'.
rowFilter logical vector. Whether to skip the source row.
Details

The purpose of this compute step is to help quickly perform many similar analyses. For example,
if we are given a sample of people with a few million SNPs (single-nucleotide polymorphism) per
person then we could fit a separate model for each SNP by iterating over the SNP data.

The column names given in the column parameter must already exist in the model’s MxData object.
Pre-existing data is assumed to be a placeholder and is not used unless originalDatalsIndexOne
is set to TRUE.

For method="csv', the highest performance arrangement is byrow=TRUE because entire columns
are stored in single chunks (rows) on the disk and can be easily loaded. For byrow=FALSE, the data
requires transposition. To load a single column of observed data, it is necessary to read through
the whole file. This can be slow for large files. To amortize the cost of transposition, cacheSize
columns are loaded on every pass through the file.

After mxRun returns, the dest mxData object will contain the most recently loaded data. Hence,
any single analysis of a series can be reproduced by issuing mxComputelLoadData with the sin-
gle index associated with a particular dataset, replacing the compute plan with something like
omxDefaultComputePlan, and then passing the model back through mxRun. This can be a help-
ful approach when investigating unexpected results.

See Also

mxComputeLoadMatrix, mxComputeCheckpoint, mxRun, omxDefaultComputePlan

120 mxComputeLoadMatrix

mxComputeLoadMatrix Load data from CSV files directly into the backend

Description

THIS INTERFACE IS EXPERIMENTAL AND SUBJECT TO CHANGE.

For method="csv’, the file must be formatted in a specific way. The number of columns must match
the number of entries available in the mxMatrix. Matrix types (e.g., symmetric or diagonal) are
respected (see mxMatrix). For example, a Full 2x2 matrix will require 4 entries, but a diagonal
matrix of the same size will only require 2 entries. CSV data must be stored space separated and
without row or column names. The destination mxMatrix can have free parameters, but cannot have
square bracket populated entries.

If originalDataIsIndexOne is TRUE then this compute step does nothing when the loop index
is 1. The purpose of originalDataIsIndexOne is to permit usage of the dataset that was initially
included with the model.

Usage

mxComputeLoadMatrix(dest, method=c('csv', 'data.frame'), ...,
path=NULL, originalDatalsIndexOne=FALSE,
row.names=FALSE, col.names=FALSE, observed=NULL)

Arguments
dest a character vector of matrix names
method name of the conduit used to load the data.
Not used. Forces remaining arguments to be specified by name.
path a character vector of paths

originalDatalsIndexOne
logical. Whether to use the initial data for index 1

row.names logical. Whether row names are present

col.names logical. Whether column names are present

observed data frame. The reservoir of data for method="'data. frame'
See Also

mxComputeL.oadData, mxComputeCheckpoint
Examples

library(OpenMx)

dir <-tempdir() # safe place to create files

Cov <- rWishart(4, 20, toeplitz(c(2,1)/20))

mxComputeLoop 121

write.table(t(apply(Cov, 3, vech)),
file=file.path(dir, "cov.csv"),
col.names=FALSE, row.names=FALSE)

Mean <- matrix(rnorm(8),4,2)

write.table(Mean, file=file.path(dir, "mean.csv"),
col.names=FALSE, row.names=FALSE)

ml <- mxModel(
"test1”,

mxMatrix("Full”, 1,2, values=0, name="mean"),
mxMatrix("Symm”, 2,2, values=diag(2), name="cov"),
mxMatrix("Full”, 1,2, values=-1, name="1bound"),
mxMatrix("Full”, 1,2, values=1, name="ubound"),

mxAlgebra(omxMnor (cov,mean, 1bound,ubound), name="area"),
mxFitFunctionAlgebra(”area”),
mxComputelLoop(list(
mxComputelLoadMatrix(c('mean', 'cov'),
path=file.path(dir, c('mean.csv', 'cov.csv'))),
mxComputeOnce('fitfunction', 'fit'),
mxComputeCheckpoint(path=file.path(dir, "loadMatrix.csv"))
), i=1:4))

ml <- mxRun(m1)

mxComputelLoop Repeatedly invoke a series of compute objects

Description

When 1i is given then these values are iterated over instead of the sequence 1 to the number of
iterations.

Usage

mxComputeLoop(
steps,
i = NULL,
maxIter = as.integer(NA),
freeSet = NA_character_,
maxDuration = as.numeric(NA),
verbose = 0L,
startFrom = 1L

Arguments

steps a list of compute objects

Not used. Forces remaining arguments to be specified by name.

122 mxComputeNelderMead

i the values to iterate over

maxIter the maximum number of iterations

freeSet Names of matrices containing free variables.

maxDuration the maximum amount of time (in seconds) to iterate

verbose integer. Level of run-time diagnostic output. Set to zero to disable
startFrom When i=NULL, permits starting from an index greater than 1.

mxComputeNelderMead Optimize parameters using a variation of the Nelder-Mead algorithm.

Description

OpenMx includes a flexible, options-rich implementation of the Nelder-Mead algorithm.

Usage

mxComputeNelderMead(

freeSet=NA_character_, fitfunction="fitfunction”, verbose=0L,
nudgeZeroStarts=mxOption(NULL, "Nudge zero starts"),
maxIter=NULL, ...,

alpha=1, betao=0.5, betai=0.5, gamma=2, sigma=0.5, bignum=1e35,
iniSimplexType=c("regular”,”right”, "smartRight","random"),
iniSimplexEdge=1, iniSimplexMat=NULL, greedyMinimize=FALSE,
altContraction=FALSE, degenLimit=0, stagnCtrl=c(-1L,-1L),
validationRestart=TRUE,

xTolProx=1e-8, fTolProx=1e-8,

doPseudoHessian=TRUE,

inegConstraintMthd=c("soft", "eqMthd"),
eqConstraintMthd=c("”GDsearch”, "soft", "backtrack”,"11p"),
backtrackCtrl=c(0.5,5),

centerIniSimplex=FALSE)

Arguments

freeSet Character-string names of MxMatrices containing free parameters.

fitfunction Character-string name of the fitfunction; defaults to ’fitfunction’.

verbose Integer level of reporting printed to terminal at runtime; defaults to 0.

nudgeZeroStarts
Should free parameters with start values of zero be "nudged" to 0.1 at runtime?
Defaults to the current global value of mxOption "Nudge zero starts". May be a
logical value, or one of character strings "Yes" or "No".

maxIter Integer maximum number of iterations. Value of NULL is accepted, in which case

the value used at runtime will be 10 times the number of iterations specified by
the effective value of mxOption "Major iterations".

mxComputeNelderMead 123

alpha

betao, betai

Not used. Forces remaining arguments to be specified by name.
Numeric reflection coefficient. Must be positive. Defaults to 1.0.

Numeric outside- and inside-contraction coefficients, respectively. Both must
be within unit interval (0,1). Both default to 0.5.

gamma Numeric expansion coefficient. If positive, must be greater than alpha. If non-
positive, expansion transformations will not be carried out. Defaults to 2.0.

sigma Numeric shrink coefficient. Cannot exceed 1.0. If non-positive, shrink transfor-
mations will not be carried out, and failed contractions will instead be followed
by a simplex restart. Defaults to 0.5.

bignum Numeric value with which the fitfunction value is to be replaced if the fit is
non-finite or is evaluated at infeasible parameter values. Defaults to 1e35.

iniSimplexType Character string naming the method by which to construct the initial simplex
from the free-parameter start values. Defaults to "regular".

iniSimplexEdge Numeric edge-length of the initial simplex. Defaults to 1.0.

iniSimplexMat Optional numeric matrix providing the vertices of the initial simplex. The matrix
must have as many columns as there are free parameters in the MxModel. The
matrix’s number of rows must be no less than the number of free parameters
minus the number of degrees-of-freedom gained from equality MxConstraints,
if any. If a non-NULL value is provided, argument iniSimplexEdge is ignored,
and argument iniSimplexType is only used in the case of a restart.

greedyMinimize Logical; should the optimizer use "greedy minimization?" Defaults to FALSE.
See below for details.

altContraction Logical; should the optimizer use an "alternate contraction" transformation? De-
faults to FALSE. See below for details.

degenLimit Numeric "degeneracy limit;" defaults to 0. If positive, the simplex will be
restarted if the measure of the angle between any two of its edges is within 0
or pi by less than degenLimit.

stagnCtrl "Stagnation control;" integer vector of length 2; defaults to c(-1L,-1L). See
below for details.

validationRestart
Logical; defaults to TRUE.

xTolProx Numeric "domain-convergence" criterion; defaults to 1e-8. See below for de-
tails.

fTolProx Numeric "range-convergence" criterion; defaults to 1e-8. See below for details.

doPseudoHessian
Logical; defaults to TRUE.

ineqConstraintMthd
"Inequality constraint method;" character string. Defaults to "soft".

eqConstraintMthd
"Equality constraint method;" character string. Defaults to "GDsearch".

backtrackCtrl Numeric vector of length two. See below for details.

124 mxComputeNelderMead

centerIniSimplex
Logical. If FALSE (default), the MxModel’s start values are used as the "first"
vertex of the initial simplex. If TRUE, the initial simplex is re-centered so that
the MxModel’s start values are its eucentroid. However, if iniSimplexMat is
non-NULL or if iniSimplexType="smartRight", a value of TRUE is treated as
FALSE.

Details

The state of a Nelder-Mead optimization problem is represented by a simplex (polytope) of n + 1
vertices in the space of the free parameters, where n is the number of free parameters minus the
number of degrees-of-freedom gained from equality MxConstraints. An iteration of the algorithm
first sorts the n 4 1 vertices by their corresponding fitfunction values (i.e., the values of the fitfunc-
tion when evaluated at each vertex), in ascending order (i.e., from "best" fit to "worst" fit). Then,
the "subcentroid,"” which is the centroid of the "best" n vertices, is calculated. Then, the algorithm
attempts to improve upon the worst fit by transforming the simplex; see Singer & Nelder (2009) for
details.

Argument iniSimplexType dictates how the initial simplex will be constructed from the start val-
ues if argument iniSimplexMat is NULL, and how the simplex will be re-initialized in the case of
a restart. In all four cases, the vector of start values constitutes the "starting vertex" of the initial
simplex. If iniSimplexType="regular", the initial simplex is merely a regular simplex with edge
length equal to iniSimplexEdge. A "right” simplex is constructed by incrementing each free pa-
rameter by iniSimplexEdge from its starting value; thus, all the edges that intersect at the starting
vertex do so at right angles. A "smartRight"” simplex is constructed similarly, except that each free
parameter is both incremented and decremented by iniSimplexEdge, and of those two points the
one with the smaller fitfunction value is retained as a vertex. A "random” simplex is constructed
by randomly perturbing the start values, in a manner similar to the default for mxTryHard(), to
generate the coordinates of the other vertices. The user is advised that bounds on the free param-
eters may keep the initial simplex from having the requested regularity or edge-length, and that
iniSimplexType is at best a suggestion in the presence of equality MxConstraints.

Note that if argument iniSimplexMat has nonzero length, the actual start values of the MxModel’s
free parameters are not used as a vertex of the initial simplex (unless one of the rows of iniSimplexMat
happens to contain those start values).

If the simplex is restarted, a new simplex is constructed per argument iniSimplexType, with edge
length equal to the distance between the current best and second-best vertices, and with the current
best vertex used as the "first" vertex.

If greedyMinimize=FALSE, "greedy expansion" (Singer & Singer, 2004) is used: if the expansion
point and reflection point both have smaller fitfunction values than the best vertex, the expansion
point is accepted. If greedyMinimize=TRUE, "greedy minimization" (Singer & Singer, 2004) is
used: if the expansion point and the reflection point both have smaller fitfunction values than the
best vertex, the better of the two new points is accepted.

If argument altContraction=TRUE, the "modified contraction step" of Gill et al. (1982, Chap-
ter 4) is used, and the candidate point is contracted toward the best vertex instead of toward the
subcentroid.

If positive, the first element of argument stagnCtrl sets a threshold for the number of successive
iterations in which the best vertex of the simplex does not change, after which the algorithm is said
to be "stagnant" (in a sense similar to that of Kelley, 1999). To attempt to remedy the stagnation, the

http://www.scholarpedia.org/article/Nelder-Mead_algorithm

mxComputeNelderMead 125

simplex is restarted. If positive, the second element of argument stagnCtrl sets threshold for the
number of restarts conducted, beyond which stagnation no longer triggers a restart. The rationale
for the second element is that the best vertex may not change for many iterations when the optimizer
is close to convergence, under which circumstances restarting would be counterproductive, and in
any event would require additional fitfunction evaluations.

If argument validationRestart=TRUE, then when the optimizer has successfully converged, it
will restart the simplex and attempt to improve upon the tentative solution it already found. This
validation restart (Gill et al., 1982, Chapter 4) always re-initializes the simplex as a regular simplex,
centered on the best vertex of the tentative solution, with edge-length equal to the distance between
the best and worst vertices of the tentative solution. Optimization proceeds until convergence to a
solution with a better fit value, or 2n iterations have elapsed.

The Nelder-Mead optimizer is considered to have successfully converged if (1) the largest /-infinity
norm of the vector-differences between the best vertex and the other vertices is less than argument
xTolProx, or (2) if the largest absolute difference in fit value between the best vertex and the other
vertices is less than fTolProx.

If argument doPseudoHessian=TRUE, there are no equality MxConstraints, and the "l1p" method
(see below) is not in use for inequality MxConstraints, then OpenMx will attempt to calculate the
"pseudo-Hessian" or "curvature" matrix as described in the appendix to Nelder & Mead (1965). If
successful, this matrix will be stored in the *output’ slot of the post-run MxComputeNelderMead
object. Although crude, its inverse can be used as an estimate of the repeated-sampling covariance
matrix of the free parameters when the usual finite-differences Hessian is unreliable.

OpenMx’s implementation of Nelder-Mead can handle nonlinear inequality MxConstraints rea-
sonably well. Its default method for doing so, with argument ineqConstraintMthd="soft", im-
poses a "soft" feasibility constraint by assigning a fitfunction value of bignum to points that vi-
olate the constraints by more than mxOption ’Feasibility tolerance’. Alternately, with argument
inegConstraintMthd="egMthd", inequality MxConstraints can be handled by the same method
provided to argument eqConstraintMthd, whether or not equality MxConstraints are present.

OpenMx’s implementation of Nelder-Mead respects equality MxConstraints, but does not han-
dle them especially well. Its effectiveness at handling equalities may be improved by providing
a matrix to argument iniSimplexMat that ensures all of the initial vertices are feasible. Users
are warned that this Nelder-Mead implementation will not work correctly with MxModels con-
taining redundant equality MxConstraints, and presently has no way of detecting whether any are
present. If argument eqConstraintMthd="GDsearch” (the default), then whenever Nelder-Mead
evaluates the fitfunction at an infeasible point, it initiates a subsidiary optimization that uses SLSQP
to find the nearest (in squared Euclidean distance) feasible point, and replaces that feasible point
for the infeasible one. The user should note that the function evaluations that occur during this
subsidiary optimization are counted toward the total number of fitfunction evaluations during the
call to mxRun(). The effectiveness of the *GDsearch’ method is often improved by setting mx-
Option ’Feasibility tolerance’ to a stricter (smaller) value than the on-load default. The method
specified by eqConstraintMthd="soft" is described in the preceding paragraph. If argument
eqConstraintMthd="backtrack”, then the optimizer attempts to backtrack from an infeasible
point to a feasible point in a manner similar to that of Ghiasi et al. (2008), except that it used with
all new points, and not just those encountered via reflection, expansion and contraction. In this case,
the displacement from the prior point to the candidate point is reduced by the proportion provided as
the first element of argument backtrackCtrl, and thus a new candidate point is considered. This
process is repeated until feasibility of the candidate point is restored, or the number of attempts
exceeds the second element of argument backtrackCtrl. If argument eqConstraintMthd="11p",

126 mxComputeNewtonRaphson

Nelder-Mead is used as part of an [;-penalty algorithm. When using "11p", the simplex gradient
(Kelley, 1999) and "pseudo-Hessian" are never calculated.

Value

Returns an object of class "MxComputeNelderMead’.

References

Ghiasi, H., Pasini, D., & Lessard, L. (2008). Constrained globalized Nelder-Mead method for
simultaneous structural and manufacturing optimization of a composite bracket. Journal of Com-
posite Materials, 42(7), p. 717-736. doi: 10.1177/0021998307088592

Gill, P. E., Murray, W., & Wright, M. H. (1982). Practical Optimization. Bingley, UK: Emerald
Group Publishing Ltd.

Kelley, C. T. (1999). Detection and remediation of stagnation in the Nelder-Mead algorithm using
a sufficient decrease condition. SIAM Journal of Optimization 10(1), p. 43-55.

Nelder, J. A., & Mead, R. (1965) . A simplex method for function minimization. The Computer
Journal, 7, p. 308-313.

Singer, S., & Nelder, J. (2009). Nelder-Mead algorithm. Scholarpedia, 4(7):2928., revision #91557.
http://www.scholarpedia.org/article/Nelder-Mead_algorithm .

Singer, S., & Singer, S. (2004). Efficient implementation of the Nelder-Mead search algorithm. Ap-
plied Numerical Analysis & Computational Mathematics Journal, 1(2), p. 524-534. doi: 10.1002/anac.200410015

Examples

foo <- mxComputeNelderMead()
str(foo)

mxComputeNewtonRaphson
Optimize parameters using the Newton-Raphson algorithm

Description

This optimizer requires analytic 1st and 2nd derivatives of the fit function. Box constraints are
supported. Parameters can approach box constraints but will not leave the feasible region (even by
some small epsilon>0). Non-finite fit values are interpreted as soft feasibility constraints. That is,
when a non-finite fit is encountered, line search is continued after the step size is multiplied by 10%.
Comprehensive diagnostics are available by increasing the verbose level.

mxComputeNothing 127

Usage

mxComputeNewtonRaphson(
freeSet = NA_character_,
fitfunction = "fitfunction”,
maxIter = 100L,
tolerance = 1e-12,
verbose = 0L

)
Arguments
freeSet names of matrices containing free variables
Not used. Forces remaining arguments to be specified by name.
fitfunction name of the fitfunction (defaults to ’fitfunction’)
maxIter maximum number of iterations
tolerance optimization is considered converged when the maximum relative change in fit
is less than tolerance
verbose integer. Level of run-time diagnostic output. Set to zero to disable
References

Luenberger, D. G. & Ye, Y. (2008). Linear and nonlinear programming. Springer.

mxComputeNothing Compute nothing

Description

Note that this compute plan actually does nothing whereas mxComputeOnce ("expectation”, "nothing")
may remove the prediction of an expectation.

Usage

mxComputeNothing()

128

mxComputeNumericDeriv

mxComputeNumericDeriv Numerically estimate Hessian using Richardson extrapolation

Description

For N free parameters, Richardson extrapolation requires (iterations * (N*2 + N)) function evalua-
tions. The implementation is closely based on the numDeriv R package.

Usage

mxComputeNumericDeriv(
freeSet = NA_character_,

L

fitfunction = "fitfunction”,
parallel = TRUE,

stepSize =
iterations

verbose = 0L,
knownHessian

imxAutoOptionValue("Gradient step size"),
4L,

= NULL,

checkGradient = TRUE,
hessian = TRUE,

analytic =

Arguments

freeSet

fitfunction
parallel
stepSize
iterations
verbose
knownHessian
checkGradient
hessian

analytic

Details

TRUE

names of matrices containing free variables

Not used. Forces remaining arguments to be specified by name.

name of the fitfunction (defaults to ’fitfunction’)

whether to evaluate the fitfunction in parallel (defaults to TRUE)

starting set size (defaults to 0.0001)

number of Richardson extrapolation iterations (defaults to 4L)

integer. Level of run-time diagnostic output. Set to zero to disable

an optional matrix of known Hessian entries

whether to check the first order convergence criterion (gradient is near zero)
whether to estimate the Hessian. If FALSE then only the gradient is estimated.

Use the analytic Hessian, if available.

In addition to an estimate of the Hessian, forward, central, and backward estimates of the gradient
are made available in this compute plan’s output slot.

mxComputeOnce 129

When checkGradient=TRUE, the central difference estimate of the gradient is used to determine
whether the first order convergence criterion is met. In addition, the forward and backward differ-
ence estimates of the gradient are compared for symmetry. When sufficient asymmetry is detected,
the standard error is flagged. In the case, profile likelihood confidence intervals should be used for
inference instead of standard errors (see mxComputeConfidencelInterval).

If provided, the square matrix knownHessian should have dimnames set to the names of some
subset of the free parameters. Entries of the matrix set to NA will be estimated numerically while
entries containing finite values will be copied to the Hessian result.

Examples

library(OpenMx)

data(demoOneFactor)

factorModel <- mxModel(name ="One Factor”,

mxMatrix(type = "Full”, nrow = 5, ncol = 1, free = FALSE, values = .2, name = "A"),

mxMatrix(type = "Symm”, nrow = 1, ncol = 1, free = FALSE, values = 1 , name = "L"),
mxMatrix(type = "Diag"”, nrow = 5, ncol = 5, free = TRUE , values = 1 , name = "U"),
mxAlgebra(A %*% L %x% t(A) + U, name = "R"),

mxExpectationNormal (covariance = "R"”, dimnames = names(demoOneFactor)),
mxFitFunctionML(),

mxData(cov(demoOneFactor), type = "cov”, numObs = 500),

mxComputeSequence (

list(mxComputeNumericDeriv(), mxComputeReportDeriv())

)

)

factorModelFit <- mxRun(factorModel)
factorModelFit$output$hessian

mxComputeOnce Compute something once

Description

Some models are optimized for a sparse Hessian. Therefore, it can be much more efficient to
compute the inverse Hessian in comparison to computing the Hessian and then inverting it.

Usage
mxComputeOnce(
from,
what = NULL,
how = NULL,

freeSet = NA_character_,
verbose = 0L,
.is.bestfit = FALSE

130 mxComputePenaltySearch

Arguments
from the object to perform the computation (a vector of expectation or fit function
names)
what what to compute
how to compute it (optional)
Not used. Forces remaining arguments to be specified by name.
freeSet names of matrices containing free variables
verbose integer. Level of run-time diagnostic output. Set to zero to disable
.is.bestfit do not use; for backward compatibility
Details

The information matrix is only valid when parameters are at the maximum likelihood estimate. The
information matrix is returned in model$output$hessian. You cannot request both the information
matrix and the Hessian. The information matrix is invariant to the sign of the log likelihood scale
whereas the Hessian is not. Use the how parameter to specify which approximation to use (one of

non

"default", "hessian", "sandwich", "bread", and "meat").

Examples

data(demoOneFactor)
factorModel <- mxModel(name ="One Factor”,
mxMatrix(type="Full”, nrow=5, ncol=1, free=TRUE, values=0.2, name="A"),

mxMatrix(type="Symm", nrow=1, ncol=1, free=FALSE, values=1, name="L"),
mxMatrix(type="Diag"”, nrow=5, ncol=5, free=TRUE, values=1, name="U"),
mxAlgebra(expression=A %*% L %*% t(A) + U, name="R"),
mxFitFunctionML(),mxExpectationNormal(covariance="R", dimnames=names(demoOneFactor)),
mxData(observed=cov(demoOneFactor), type="cov"”, numObs=500),
mxComputeOnce('fitfunction', 'fit'))

factorModelFit <- mxRun(factorModel)

factorModelFit$output$fit # 972.15

mxComputePenaltySearch
Regularize parameter estimates

Description

Add a penalty to push some subset of the parameter estimates toward zero.

mxComputeReportDeriv 131

Usage

mxComputePenaltySearch(
plan,

freeSet = NA_character_,
verbose = 0L,

fitfunction = "fitfunction”,
approach = "EBIC",

ebicGamma = 0.5

)
Arguments
plan compute plan to optimize the model
Not used. Forces remaining arguments to be specified by name.
freeSet names of matrices containing free variables
verbose integer. Level of run-time diagnostic output. Set to zero to disable
fitfunction the name of the deviance function
approach what fit function to use to compare regularized models? Currently only EBIC is
available
ebicGamma what Gamma value to use for EBIC? Must be between 0 and 1
References

Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). Regularized structural equation modeling.
<i>Structural equation modeling: a multidisciplinary journal, 23</i>(4), 555-566.

mxComputeReportDeriv Report derivatives

Description

Copy the internal gradient and Hessian back to R.

Usage

mxComputeReportDeriv(freeSet = NA_character_)

Arguments

freeSet names of matrices containing free variables

132 mxComputeSequence

mxComputeReportExpectation
Report expectation

Description

Copy the internal model expectations back to R.

Usage

mxComputeReportExpectation(freeSet = NA_character_)

Arguments
freeSet names of matrices containing free variables
mxComputeSequence Invoke a series of compute objects in sequence
Description

Invoke a series of compute objects in sequence

Usage

mxComputeSequence(
steps = list(),

freeSet = NA_character_,
independent = FALSE

)
Arguments
steps a list of compute objects
Not used; forces argument 'freeSet’ to be specified by name.
freeSet Names of matrices containing free parameters.

independent Whether the steps could be executed out-of-order.

mxComputeSetOriginalStarts 133

mxComputeSetOriginalStarts
Reset parameter starting values

Description

Sets the current parameter vector back to the original starting values.

Usage

mxComputeSetOriginalStarts(freeSet = NA_character_)

Arguments

freeSet names of matrices containing free variables

mxComputeSimAnnealing Optimization using generalized simulated annealing

Description

Performs simulated annealing to minimize the fit function. If the original starting values are outside
of the feasible set, a few attempts are made to find viable starting values.

Usage

mxComputeSimAnnealing(freeSet=NA_character_, ..., fitfunction='fitfunction',
plan=mxComputeOnce('fitfunction','fit"),

verbose=0L, method=c("tsallis1996", "ingber2012"), control=list(),
defaultGradientStepSize=imxAutoOptionValue("Gradient step size"),
defaultFunctionPrecision=imxAutoOptionValue(”"Function precision”))

Arguments
freeSet names of matrices containing free variables
Not used. Forces remaining arguments to be specified by name.
fitfunction name of the fitfunction (defaults to ’fitfunction’)
plan compute plan to optimize the model
verbose level of debugging output
method which algorithm to use
control control parameters specific to the chosen method

defaultGradientStepSize

the default gradient step size
defaultFunctionPrecision

the default function precision

134 mxComputeSimAnnealing

Details

For method ‘tsallis1996’, the number of function evaluations are determined by the tempStart
and tempEnd parameters. There is no provision to stop early because there is no way to determine
whether the algorithm has converged. The Markov step is implemented by cycling through each
parameters in turn and considering a univariate jump (like a Gibbs sampler).

Control parameters include qv to control the shape of the visiting distribution, gaInit to control
the shape of the initial acceptance distribution, lambda to reduce the probability of acceptance
in time, tempStart to specify starting temperature, tempEnd to specify ending temperature, and
stepsPerTemp to set the number of Markov steps per temperature step.

Non-linear constraints are accommodated by a penalty function. Inequality constraints work rea-
sonably well, but equality constraints do not work very well. Constrained optimization will likely
require increasing stepsPerTemp.

Classical simulated annealing (CSA) can be obtained with qv=qa=1 and lambda=0. Fast simulated
annealing (FSA) can be obtained with qv=2, ga=1, and 1ambda=0. FSA is faster than CSA, but GSA
is faster than FSA. GenSA default parameters are set to those identified in Xiang, Sun, Fan & Gong
(1997).

Method ‘ingber2012’ has spawned a cultural tradition over more than 30 years that is documented

in Aguiar e Oliveira et al (2012). Options are specified using the traditional option names in the
control list. However, there are a few option changes to make ASA fit better with OpenMx. In-
stead of option Curvature_0, use mxComputeNumericDeriv. ASA_PRINT output is directed to
/dev/null by default. To direct ASA_PRINT output to console use control=1ist('Asa_Out_File'=
"/dev/fd/1"). ASA’s option to control the finite differences gradient step size, Delta_X, defaults

to mxOption’s ‘Gradient step size’ instead of ASA’s traditional 0.001. Similarly, Cost_Precision
defaults to mxOption’s ‘Function Precision’ instead of ASA’s traditional le-18.

References

Aguiar e Oliveira, H., Ingber, L., Petraglia, A., Petraglia, M. R., & Machado, M. A. S. (2012).
Stochastic global optimization and its applications with fuzzy adaptive simulated annealing. Springer
Publishing Company, Incorporated.

Tsallis, C., & Stariolo, D. A. (1996). Generalized simulated annealing. Physica A: Statistical
Mechanics and its Applications, 233(1-2), 395-406.

Xiang, Y., Sun, D. Y., Fan, W., & Gong, X. G. (1997). Generalized simulated annealing algorithm
and its application to the Thomson model. Physics Letters A, 233(3), 216-220.

See Also

mxComputeTryHard

Examples

library(OpenMx)

ml <- mxModel(

"poly22", # Egn 22 from Tsallis & Stariolo (1996)
mxMatrix(type='Full', values=runif(4, min=-1e6, max=1e6),
ncol=1, nrow=4, free=TRUE, name='x'),
mxAlgebra(sum((x*x-8)"2) + 5xsum(x) + 57.3276, name="fit"),

mxComputeStandardError 135

mxFitFunctionAlgebra('fit'),
mxComputeSimAnnealing())

ml <- mxRun(m1)
summary (m1)

mxComputeStandardError
Compute standard errors

Description

When the fit is in -2 log likelihood units, the SEs are derived from the diagonal of the Hessian or
inverse Hessian. The Hessian (in some form) must already be available.

Usage

mxComputeStandarderror(freeSet = NA_character_, fitfunction = "fitfunction”)
Arguments

freeSet names of matrices containing free variables

fitfunction name of the fitfunction (defaults to ’fitfunction’)
Details

If there are active MxConstraints and the fit is in -2logL units, the SEs are derived from the Hessian
and the Jacobian of the constraint functions (see references).

References

Moore T & Sadler B. (2006). Maximum-Likelihood Estimation and Scoring Under Parametric
Constraints. Army Research Laboratory report ARL-TR-3805. Schoenberg R. (1997). Constrained
maximum likelihood. Computational Economics, 10, p. 251-266.

mxComputeTryCatch Execute a sub-compute plan, catching errors

Description
[Experimental] Any error will be recorded in a subsequent checkpoint. After execution, the context
will be reset to continue computation as if no errors has occurred.

Usage

mxComputeTryCatch(plan, ..., freeSet = NA_character_)

136 mxComputeTryHard

Arguments

plan compute plan to optimize the model

Not used. Forces remaining arguments to be specified by name.

freeSet names of matrices containing free variables
See Also

mxComputeCheckpoint

mxComputeTryHard Repeatedly attempt a compute plan until successful

Description

The provided compute plan is run until the status code indicates success (0 or 1). It gives up after a
small number of retries.

Usage
mxComputeTryHard(
plan,
freeSet = NA_character_,
verbose = 0L,
location = 1,
scale = 0.25,
maxRetries = 3L
)
Arguments
plan compute plan to optimize the model
Not used. Forces remaining arguments to be specified by name.
freeSet names of matrices containing free variables
verbose integer. Level of run-time diagnostic output. Set to zero to disable
location location of the perturbation distribution
scale scale of the perturbation distribution

maxRetries maximum number of plan evaluations per invocation (including the first evalua-
tion)

mxConstraint 137

Details

Upon failure, start values are randomly perturbed. Currently only the uniform distribution is im-
plemented. The distribution is parameterized by arguments location and scale. The location
parameter is the distribution’s median. For the uniform distribution, scale is the absolute differ-
ence between its median and extrema (i.e., half the width of the rectangle). Each start value is
multiplied by a random draw and then added to a random draw from a distribution with the same
scale but with a median of zero.

References

Shanno, D. F. (1985). On Broyden-Fletcher-Goldfarb-Shanno method. Journal of Optimization
Theory and Applications, 46(1), 87-94.

See Also

mxTryHard

mxConstraint Create MxConstraint Object

Description

This function creates a new MxConstraint object.

Usage
mxConstraint(expression, name=NA, ..., jac=character(@), verbose=0L, strict=TRUE)
Arguments
expression The MxAlgebra-like expression representing the constraint function.
name An optional character string indicating the name of the object.
Not used. Helps OpenMx catch bad input to argument expression, and requires
argument jac—meant for advanced users—to be specified by name.
jac An optional character string naming the MxAlgebra or MxMatrix representing
the Jacobian for the constraint function.
verbose For values greater than zero, enable runtime diagnostics.

strict Whether to require that all Jacobian entries reference free parameters.

138 mxConstraint

Details

The mxConstraint () function defines relationships between two MxAlgebra or MxMatrix objects.
They are used to affect the estimation of free parameters in the referenced objects. The constraint
relation is written identically to how a MxAlgebra expression would be written. The outermost
operator in this relation must be either ‘<’, ‘=="or *>’. To affect an estimation or optimization, an
MxConstraint object must be included in an MxModel object with all referenced MxAlgebra and
MxMatrix objects.

Usage Note: Use of mxConstraint() should be avoided where it is possible to achieve the con-
straint by equating free parameters by label or position in an MxMatrix or MxAlgebra object. In-
cluding mxConstraints in an mxModel will disable standard errors and the calculation of the final
Hessian, and thus should be avoided when standard errors are of importance. Constraints also add
computational overhead. If one labels two parameters the same, the optimizer has one fewer pa-
rameter to optimize. However, if one uses mxConstraint to do the same thing, both parameters
remain estimated and a Lagrangian multiplier is added to maintain the constraint. This constraint
also has to have its gradients computed and the order of the Hessian grows as well. So while both
approaches should work, the mxConstraint() will take longer to do so.

Alternatives to mxConstraints include using labels, Ibound or ubound arguments or algebras. Free
parameters in the same MxModel may be constrained to equality by giving them the same name in
their respective ’labels’ matrices. Similarly, parameters may be fixed to an individual element in a
MxModel object or the result of an MxAlgebra object through labeling. For example, assigning a
label of “name[1,1]* fixes the value of a parameter at the value in first row and first column of the
matrix or algebra “name*. The mxConstraint function should be used to enforce inequalities that
cannot be conveyed using other methods.

Note that constraints should not depend on definition variables. This mode of operation is not
supported.

Argument jac is used to provide the name of an MxMatrix or MxAlgebra that equals the matrix of
first derivatives—the Jacobian—of the constraint function with respect to the free parameters. Here,
the "constraint function" refers to the constraint expression in canonical form: an arbitrary matrix
expression on the left-hand side of the comparator, and a matrix of zeroes with the same dimensions
on the right-hand side. The rows of the Jacobian correspond to elements of the matrix result of the
right-hand side, in column-major order. Each row of the Jacobian is the vector of first partial
derivatives, with respect to the free parameters of the MxModel, of its corresponding element. Each
column of the Jacobian corresponds to a free parameter of the MxModel; each column must be
named with the label of the corresponding free parameter. All the gradient-descent optimizers are
able to take advantage of user-supplied Jacobians. To verify the analytic Jacobian against the same
values estimated by finite differences, use ‘verbose=3’.

In the past, OpenMx has relied on NPSOL’s finite differences algorithm to fill in unknown Jacobian
entries. When analytic Jacobians are used, OpenMx no longer relies on NPSOL’s finite differences
algorithm. Any missing entries are taken care of by OpenMx’s finite differences algorithm. Whether
NPSOL or OpenMx conducts finite differences, the results should be very similar.

Value

Returns an MxConstraint object.

MxConstraint-class 139

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

MxConstraint for the S4 class created by mxConstraint.

Examples

library(OpenMx)

#Create a constraint between MxMatrices 'A' and 'B'
constraint <- mxConstraint(A > B, name = 'AdominatesB')

Constrain matrix 'K' to be equal to matrix 'limit’

model <- mxModel(model="con_test"”,
mxMatrix(type="Full”, nrow=2, ncol=2, free=TRUE, name="K"),
mxMatrix(type="Full”, nrow=2, ncol=2, free=FALSE, name="limit", values=1:4),
mxConstraint(K == limit, name = "Klimit_equality"),
mxAlgebra(min(K), name="minK"),
mxFitFunctionAlgebra("minK")

)

fit <- mxRun(model)
fit$matrices$K$values

[,11 [,2]
01,1 1 3
[2,] 2 4

Constrain both free parameters of a matrix to equality using labels (both are set to "eq"”)
equal <- mxMatrix("Full”, 2, 1, free=TRUE, values=1, labels="eq", name="D")

Constrain a matrix element in to be equal to the result of an algebra
start <- mxMatrix("Full”, 1, 1, free=TRUE, values=1, labels="param”, name="F")
alg <- mxAlgebra(log(start), name="logP")

Force the fixed parameter in matrix G to be the result of the algebra
end <- mxMatrix("Full”, 1, 1, free=FALSE, values=1, labels="logP[1,1]", name="G")

MxConstraint-class Class "MxConstraint”

Description

MxConstraint is an S4 class. An MxConstraint object is a named entity. New instances of this class
can be created using the function mxConstraint().

https://openmx.ssri.psu.edu/documentation/

140 MxConstraint-class

Details

Slots may be referenced with the $ symbol. See the documentation for Classes and the examples in

the mxConstraint document for more information.

Slots

name: Character string; the name of the object.

formula: Object of class "MxAlgebraFormula”. The MxAlgebra-like expression representing the

constraint function.
algl: Object of class "MxCharOrNumber”. For internal use.
alg2: Object of class "MxCharOrNumber”. For internal use.

relation: Object of class "MxCharOrNumber". For internal use.

jac: Object of class "MxCharOrNumber”. Identifies the MxAlgebra representing the Jacobian for

the constraint function.
linear: Logical. For internal use.
strict: Logical. Whether to require that all Jacobian entries reference free parameters.

verbose: integer. For values greater than zero, enable runtime diagnostics.

Methods

$<- signature(x = "MxConstraint”)

$ signature(x = "MxConstraint”)

imxDeparse signature(object = "MxConstraint”)
names signature(x = "MxConstraint”)

print signature(x = "MxConstraint")

show signature(object = "MxConstraint”)

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxConstraint () for the function that creates MxConstraint objects.

Examples

showClass("MxConstraint”)

https://openmx.ssri.psu.edu/documentation/

mxData 141

mxData Create MxData Object

Description

This function creates a new MxData object. This can be used all forms of analysis (including WLS:
see mxFitFunctionWLS). It packages observed data (e.g. a dataframe, matrix, or cov or cor matrix)
into an object with additional information allowing it to be processed in an mxModel.

Usage

mxData(observed=NULL, type="none", means = NA, numObs = NA, acov=NA, fullWeight=NA,
thresholds=NA, ..., observedStats=NA, sort=NA, primaryKey = as.character(NA),
weight = as.character(NA), frequency = as.character(NA),
verbose = 0L, .parallel=TRUE, .noExoOptimize=TRUE,
minVariance=sqrt(.Machine$double.eps), algebra=c(),
warnNPDacov=TRUE, warnNPDuseWeight=TRUE, exoFree=NULL,
naAction=c("pass”,"fail”,"omit"”,"exclude"),
fitTolerance=sqgrt(as.numeric(mxOption(key="0Optimality tolerance”))),
gradientTolerance=1e-2)

Arguments

observed A matrix or data.frame which provides data to the MxData object. Can be NULL
when summary data are provided via ‘observedStats’.

type A character string defining the type of data in the ‘observed’ argument. Must be
one of “raw”, “cov”, “cor”, or “acov”. If no observed data are provided then use
“none”.

means An optional vector of means for use when ‘type’ is “cov”, or “cor”.

numObs The number of observations in the data supplied in the ‘observed’ argument.

Required unless ‘type’ equals “raw”.
Not used. Forces remaining arguments to be specified by name.

observedStats A list containing observed statistics for weighted least squares estimation. See
details for contents

sort Whether to sort raw data prior to use (default NA).

primaryKey The column name of the primary key used to uniquely identify rows (default
NA)

weight The column name containing row weights.

frequency The column name containing row frequencies.

verbose level of diagnostic output.

.parallel logical. Whether to compute observed summary statistics in parallel.

.noExoOptimize logical. Whether to use math short-cuts for the case of no exogenous predictors.

minVariance numeric. The minimum acceptable variance for ‘observedStats$cov’.

142 mxData

acov Deprecated in favor of the acov element of observedStats.

fullWeight Deprecated in favor of the fullWeight element of observedStats.

thresholds Deprecated in favor of the thresholds element of observedStats.

algebra character vector. Names of algebras used to fill in calculated columns of raw
data. [Experimental]

warnNPDacov [Deprecated]

warnNPDuseWeight
logical. Whether to warn when the asymptotic covariance matrix is non-positive
definite.

exofree logical matrix of observed manifests by exogenous predictors. Defaults to all

TRUE, but you can fix some regression coefficients in the observedStats slope
matrix to zero by setting entries to FALSE. [Experimental]

naAction Specify treatment of missing data. See details. [Maturing]

fitTolerance fit tolerance used for WLS summary statistics [Experimental]

gradientTolerance
gradient tolerance used for WLS summary statistics [Experimental]

Details

The mxData function creates MxData objects used in mxModels. The ‘observed’ argument may
take either a data frame or a matrix, which is then described with the ‘type’ argument. Data types
describe compatibility and usage with expectation functions in MxModel objects. Three data types
are supported (acov is deprecated).

raw The contents of the ‘observed’” argument are treated as raw data. Missing values are permitted
and must be designated as the system missing value. The ‘means’ and ‘numObs’ arguments
cannot be specified, as the ‘means’ argument is not relevant and the ‘numObs’ argument is
automatically populated with the number of rows in the data. Data of this type may use fit
functions such as mxFitFunctionML or mxFitFunctionWLS. mxFitFunctionML will automat-
ically use use full-information maximum likelihood for raw data.

cov The contents of the ‘observed’ argument are treated as a covariance matrix. The ‘means’
argument is not required, but may be included for estimations involving means. The ‘numObs’
argument is required, which should reflect the number of observations or rows in the data
described by the covariance matrix. Cov data typically use the mxFitFunctionML fit function,
depending on the specified model.

acov This type was used for WLS data as created by mxDataWLS. Unless you are using summary
data, its use is deprecated. Instead, use type =‘raw’ and an mxFitFunctionWLS. If type ‘acov’
is set, the ‘observed’ argument will (usually) contain raw data and the ‘observedStats’ slot
contain a list of observed statistics.

cor The contents of the ‘observed’ argument are treated as a correlation matrix. The ‘means’
argument is not required, but may be included for estimations involving means. The ‘numObs’
argument is required, which should reflect the number of observations or rows in the data
described by the covariance matrix. Models with cor data typically use the mxFitFunctionML
fit function.

mxData 143

Note on data handling: OpenMx uses the names of variables to map them onto other elements
of your model, such as expectation functions. Thus for data provided as a data.frame, ensure the
columns have appropriate names. Covariance and correlation matrices need to have both the row and
column names set and these must be identical, for instance by using dimnames = 1ist(varNames,
varNames).

Correlation data

To obtain accurate parameter estimates and standard errors, it is necessary to constrain the model
implied covariance matrix to have unit variances. This constraint is added automatically if you use
an mxModel with type="'RAM' or type='LISREL'. Otherwise, you will need to add this constraint
yourself.

WLS data

The observedStats contains the following named objects: cov, slope, means, asymCov, useWeight,
and thresholds.

‘cov’ The (polychoric) covariance matrix of raw data variables. An error is raised if any variance is
smaller minVariance.

‘slope’ The regression coefficients from all exogenous predictors to all observed variables. Required
for exogenous predictors.

‘means’ The means of the data variables. Required for estimations involving means.
‘thresholds’ Thresholds of ordinal variables. Required for models including ordinal variables.

‘asymCov’ The asymptotic covariance matrix (all entries non-zero). This matrix is sample size
independent. Lavaan’s NACOV is comparable to asymCov multiplied by N2.

‘useWeight’ (optional) The weight matrix used in the mxFitFunctionWLS. Can be dense or diagonal
for diagonally weighted least squares. This matrix is scaled by the sample size. Lavaan’s WLS.V is
comparable to useWeight.

A simple Newton Raphson optimizer is used to obtain the summary statistics from the raw data.
There are two parameters that control the accuracy of the optimization. In a first pass, the fit
function is optimized to ‘fitTolerance’. However, fit function becomes imprecise as the amount of
data increases due to catastrophic cancellation. To fine-tune the fit, the gradient is optimized to
‘gradientTolerance’.

note: WLS data typically use the mxFitFunctionWLS function.

IMPORTANT: The WLS interface is under heavy development to support both very fast backend
processing of raw data while continuing to support modeling applications which require direct ac-
cess to the object in the front end. Some user-interface changes should be expected as we optimize
both these workflows.

Missing values

For raw data, the ‘naAction’ option controls the treatment of missing values. When set to ‘pass’,
the data is passed as-is. When set to ‘fail’, the presence of any missing value will trigger an error.
When set to ‘omit’, missing data will be discarded row-wise. For example, a single missing value
in a row will cause the whole row to be discarded. When set to ‘exclude’, rows with missing data
are retained but their ‘frequency’ is set to zero.

Weights

In the case of raw data, the optional ‘weight’ argument names a column in the data that contains per-
row weights. Similarly, the optional ‘frequency’ argument names a column in the ‘observed’ data

144 mxData

that contains per-row frequencies. Frequencies must be integers but weights can be arbitrary real
numbers. For data with many repeated response patterns, organizing the data into unique patterns
and frequencies can reduce model evaluation time.

In some cases, the fit function can be evaluated more efficiently when data are sorted. When a
primary key is provided, sorting is disabled. Otherwise, sort defaults to TRUE.

The mxData function does not currently place restrictions on the size, shape, or symmetry of matri-
ces input into the ‘observed’ argument. While it is possible to specify MxData objects as covariance
or correlation matrices that do not have the properties commonly associated with these matrices,
failure to correctly specify these matrices will likely lead to problems in model estimation.

note: MxData objects may not be included in mxAlgebras nor in the mxFitFunctionAlgebra func-
tion. To reference data in these functions, use a mxMatrix or a definition variable (data.var) label.

Also, while column names are stored in the ‘observed’ slot of MxData objects, these names are
not automatically recognized as variable names in mxPaths in RAM models. These models use the
‘manifestVars’ of the mxModel function to explicitly identify used variables used in the model.

Value

Returns a new MxData object.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

To generate data, see mxGenerateData; For objects which may be entered as arguments in the
‘observed’ slot, see matrix and data.frame. See MxData for the S4 class created by mxData. For
WLS data, see mxDataWLS (deprecated). More information about the OpenMx package may be
found here.

Examples

library(OpenMx)
Simple covariance model. See other mxFitFunctions for examples with different data types

1. Create a covariance matrix x and y
covMatrix <- matrix(nrow = 2, ncol = 2, byrow = TRUE,
c(0.77642931, 0.39590663,
0.39590663, 0.49115615)
)
covNames <- c("x", "y")
dimList <- list(covNames, covNames)
dimnames(covMatrix) <- dimList

2. Create an MxData object from covMatrix
testData <- mxData(observed=covMatrix, type="cov", numObs = 100)

testModel <- mxModel (model="testModel2",
mxMatrix(name="expCov", type="Symm"”, nrow=2, ncol=2,

https://openmx.ssri.psu.edu/documentation/

MxData-class 145

values=c(.2,.1,.2), free=TRUE, dimnames=dimList),
mxExpectationNormal ("expCov"”, dimnames=covNames),
mxFitFunctionML(),
testData

)

outModel <- mxRun(testModel)

summary (outModel)

MxData-class MxData Class

Description

MxData is an S4 class. An MxData object is a named entity. New instances of this class can be
created using the function mxData. MxData is an S4 class union. An MxData object is either NULL
or a MxNonNullData object.

Details

The MxNonNullData class has the following slots:

name - The name of the object
observed - Either a matrix or a data frame
vector - A vector for means, or NA if missing
type - Either 'raw’, ’cov’, or ’cor’
numObs - The number of observations

The 'name’ slot is the name of the MxData object.

The ‘observed’ slot is used to contain data, either as a matrix or as a data frame. Use of the data in
this slot by other functions depends on the value of the "type’ slot. When ’type’ is equal to "cov’ or
“cor’, the data input into the *matrix’ slot should be a symmetric matrix or data frame.

The ’vector’ slot is used to contain a vector of numeric values, which is used as a vector of means
for MxData objects with ’type’ equal to ’cov’ or ’cor’. This slot may be used in estimation using
the mxFitFunctionML function.

The ’type’ slot may take one of four supported values:

raw The contents of the ‘observed’ slot are treated as raw data. Missing values are permitted and
must be designated as the system missing value. The ’vector’ and numObs’ slots cannot be
specified, as the ’vector’ argument is not relevant and the 'numObs’ argument is automati-
cally populated with the number of rows in the data. Data of this type may use the mxFit-
FunctionML function as its fit function in MxModel objects, which can deal with covariance
estimation under full-information maximum likelihood.

146 mxDataDynamic

cov The contents of the ‘observed’ slot are treated as a covariance matrix. The ’vector’ argument
is not required, but may be included for estimations involving means. The 'numObs’ slot is
required. Data of this type may use fit functions such as the mxFitFunctionML, depending on
the specified model.

cor The contents of the ‘observed’ slot are treated as a correlation matrix. The ’vector’ argument
is not required, but may be included for estimations involving means. The 'numObs’ slot is
required. Data of this type may use fit functions such as the mxFitFunctionML, depending on
the specified model.

The 'numObs’ slot describes the number of observations in the data. If ’type’ equals 'raw’, then
‘numObs’ is automatically populated as the number of rows in the matrix or data frame in the
‘observed’ slot. If ’type’ equals ’cov’ or ’cor’, then this slot must be input using the 'numObs’
argument in the mxData function when the MxData argument is created.

MxData objects may not be included in MxAlgebra objects or use the mxFitFunctionAlgebra func-
tion. If these capabilities are desired, data should be appropriately input or transformed using the
mxMatrix and mxAlgebra functions.

While column names are stored in the ‘observed’ slot of MxData objects, these names are not
recognized as variable names in MxPath objects. Variable names must be specified using the *man-
ifestVars® argument of the mxModel function prior to use in MxPath objects.

The mxData function does not currently place restrictions on the size, shape, or symmetry of matri-
ces input into the ‘observed’ argument. While it is possible to specify MxData objects as covariance
or correlation matrices that do not have the properties commonly associated with these matrices,
failure to correctly specify these matrices will likely lead to problems in model estimation.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxData for creating MxData objects, matrix and data.frame for objects which may be entered as
arguments in the matrix’ slot. More information about the OpenMx package may be found here.

mxDataDynamic Create dynamic data

Description

Create dynamic data

Usage

mxDataDynamic(type, ..., expectation, verbose = QL)

https://openmx.ssri.psu.edu/documentation/

MxDataStatic-class 147

Arguments
type type of data
Not used. Forces remaining arguments to be specified by name.
expectation the name of the expectation to provide the data
verbose Increase runtime debugging output
MxDataStatic-class Create static data
Description

Internal static data class.

Details

Not to be used.

mxDataWLS Create legacy MxData Object for Least Squares (WLS, DWLS, ULS)
Analyses

Description

This function creates a new MxData object of type “ULS” (unweighted least squares), “WLS”
(weighted least squares) or “DWLS” (diagonally-weighted least squares). The appropriate fit func-
tion to include with these models is mxFitFunctionWLS

note: This function continues to work, but is deprecated. Use mxData and mxFitFunctionWLS
instead.

Usage

mxDataWLS(data, type = "WLS", useMinusTwo = TRUE, returnInverted
fullWeight = TRUE, suppressWarnings = TRUE, allContinuousMethod
c("cumulants"”, "marginals"), silent=!interactive())

TRUE,

Arguments

data A matrix or data.frame which provides raw data to be used for WLS.

type A character string "WLS’ (default), ' DWLS’, or "ULS’ for weighted, diagonally
weighted, or unweighted least squares, respectively

useMinusTwo Logical indicating whether to use -2LL (default) or -LL.

returnInverted Logical indicating whether to return the information matrix (default) or the co-
variance matrix.

148 mxDataWLS

fullWeight Logical determining if the full weight matrix is returned (default). Needed for
standard error and quasi-chi-squared calculation.

suppressWarnings
Logical that determines whether to suppress diagnostic warnings. These warn-
ings are likely only helpful to developers.

allContinuousMethod
A character string ’cumulants’ (default) or *marginals’. See mxFitFunction-
WLS.
silent Whether to report progress
Details

The mxDataWLS function creates an MxData object, which can be used in MxModel objects. This
function takes raw data and returns an MxData object to be used in a model to fit with weighted least
squares.

note: This function continues to work, but is deprecated. Use mxData and mxFitFunctionWLS
instead.

Value

Returns a new MxData object.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

Browne, M. W. (1984). Asymptotically Distribution-Free Methods for the Analysis of Covariance
Structures. British Journal of Mathematical and Statistical Psychology, 37, 62-83.

See Also

mxFitFunctionWLS. MxData for the S4 class created by mxData. matrix and data.frame for objects
which may be entered as arguments in the ‘observed’ slot. More information about the OpenMx
package may be found here.

Examples
Create and fit a model using mxMatrix, mxAlgebra, mxExpectationNormal, and mxFitFunctionWLS
library(OpenMx)
Simulate some data
x=rnorm(1000, mean=0, sd=1)
y= 0.5%x + rnorm(1000, mean=0, sd=1)
tmpFrame <- data.frame(x, y)
tmpNames <- names(tmpFrame)

wdata <- mxDataWLS(tmpFrame)

Define the matrices

https://openmx.ssri.psu.edu/documentation/

mxDescribeDataWLS 149

S <- mxMatrix(type = "Full”, nrow = 2, ncol = 2, values=c(1,0,0,1),
free=c(TRUE,FALSE,FALSE,TRUE), labels=c("Vx", NA, NA, "Vy"), name = "S")

A <- mxMatrix(type = "Full”, nrow = 2, ncol = 2, values=c(0,1,0,0),
free=c(FALSE,TRUE,FALSE,FALSE), labels=c(NA, "b", NA, NA), name = "A")

I <- mxMatrix(type="Iden"”, nrow=2, ncol=2, name="I")

Define the expectation

expCov <- mxAlgebra(solve(I-A) %*% S %*% t(solve(I-A)), name="expCov")
expFunction <- mxExpectationNormal(covariance="expCov"”, dimnames=tmpNames)

Choose a fit function
fitFunction <- mxFitFunctionWLS()
Define the model

tmpModel <- mxModel(model="exampleModel”, S, A, I, expCov, expFunction, fitFunction,
wdata)

Fit the model and print a summary

tmpModelOut <- mxRun(tmpModel)

summary (tmpModelOut)
mxDescribeDataWLS Determine whether a dataset will have weights and summary statistics
for the means if used with mxFitFunctionWLS
Description

Given either a data.frame or an mxData of type raw, this function determines whether mxFitFunctionWLS
will generate expectations for means.

Usage
mxDescribeDataWLS(
data,
allContinuousMethod = c("cumulants”, "marginals"),
verbose = FALSE
)
Arguments
data the (currently raw) data being used in a mxFitFunctionWLS model.
allContinuousMethod

the method used to process data when all columns are continuous.
verbose logical. Whether to report diagnostics.

150 MzxDirectedGraph-class

Details

All-continuous data processed using the "cumulants" method lack means, while all continuous data
processed with allContinuousMethod = "marginals" will have means.

When data are not all continuous, allContinuousMethod is ignored, and means are modelled.

Value

- list describing the data.

See Also

-mxFitFunctionWLS, omxAugmentDataWithWLSSummary

Examples
#
= All continuous, data.frame input =
#

tmp = mxDescribeDataWLS(mtcars, allContinuousMethod= "cumulants”, verbose = TRUE)
tmp$hasMeans # FALSE - no means with cumulants

tmp = mxDescribeDataWLS(mtcars, allContinuousMethod= "marginals")

tmp$hasMeans # TRUE we get means with marginals

#
= mxData object as input =
#
tmp = mxData(mtcars, type="raw")

mxDescribeDataWLS(tmp, allContinuousMethod= "cumulants”, verbose = TRUE)$hasMeans # FALSE
mxDescribeDataWLS(tmp, allContinuousMethod= "marginals"”)$hasMeans # TRUE

#
= One var is a factor: Means modelled =
#
tmp = mtcars

tmp$cyl = factor(tmp$cyl)

mxDescribeDataWLS(tmp, allContinuousMethod= "cumulants"”)$hasMeans # TRUE - always has means
mxDescribeDataWLS(tmp, allContinuousMethod= "marginals")$hasMeans # TRUE

MxDirectedGraph-class MxDirectedGraph

Description

This is an internal class and should not be used directly. It is a class for directed graphs.

mxEval 151

mxEval Evaluate Values in MxModel

Description
This function can be used to evaluate an arbitrary R expression that includes named entities from a
MxModel object, or labels from a MxMatrix object.

Usage

mxEval (expression, model, compute = FALSE, show = FALSE, defvar.row = 1,
cache = new.env(parent = emptyenv()), cacheBack = FALSE, .extraBack=0L)

mxEvalByName(name, model, compute = FALSE, show = FALSE, defvar.row = 1,
cache = new.env(parent = emptyenv()), cacheBack = FALSE, .extraBack=0L)

Arguments
expression An arbitrary R expression.
model The model in which to evaluate the expression.
compute If TRUE then compute the value of algebra expressions and populate square
bracket substitutions.
show If TRUE then print the translated expression.
defvar.row The row number for definition variables when compute=TRUE; defaults to 1.
When compute=FALSE, values for definition variables are always taken from
the first (i.e., first before any automated sorting is done) row of the raw data.
cache An R environment of matrix values used to speedup computation.
cacheBack If TRUE then return the list pair (value, cache).
name The character name of an object to evaluate.
.extraBack Depth of original caller in count of stack frames (environments).
Details

[Stable] The argument ‘expression’ is an arbitrary R expression. Any named entities that are used
within the R expression are translated into their current value from the model. Any labels from
the matrices within the model are translated into their current value from the model. Finally the
expression is evaluated and the result is returned. To enable debugging, the ‘show’ argument has
been provided. The most common mistake when using this function is to include named entities in
the model that are identical to R function names. For example, if a model contains a named entity
named ‘c’, then the following mxEval call will return an error: mxEval(c(A, B, C), model).

The mxEvalByName function is a wrapper around mxEval that takes a character instead of an R
expression.

If ‘compute’ is FALSE, then MxAlgebra expressions return their current values as they have been
computed by the optimization call (using mxRun). If the ‘compute’ argument is TRUE, then MxAl-
gebra expressions will be calculated in R and square bracket substitutions will be performed. Any

152 mxEvaluateOnGrid

references to an objective function that has not yet been calculated will return a 1 x 1 matrix with a
value of NA.

The ‘cache’ is used to speedup calculation by storing previously computing values. The cache is a
list of matrices, such that names(cache) must all be of the form “modelname.entityname”. Setting
‘cacheBack’ to TRUE will return the pair list(value, cache) where value is the result of the mxEval()
computation and cache is the updated cache.

References

The OpenMx User’s guide can be found at https://openmx.ssri.psu.edu/documentation/.

See Also

mxAlgebra to create algebraic expressions inside your model and mxModel for the model object
mxEval looks inside when evaluating.

Examples

library(OpenMx)

Set up a 1x1 matrix
matrixA <- mxMatrix("Full”, nrow = 1, ncol = 1, values = 1, name = "A")

Set up an algebra
algebraB <- mxAlgebra(A + A, name = "B")

Put them both in a model
testModel <- mxModel(model="testModel3"”, matrixA, algebraB)

Even though the model has not been run, we can evaluate the algebra
given the starting values in matrixA.
mxEval (B, testModel, compute=TRUE)

If we just print the algebra, we can see it has not been evaluated
testModel$B

mxEvaluateOnGrid Evaluate an algebra on an abscissa grid and collect column results

Description

This function evaluates an algebra on a grid of points provided in an auxiliary abscissa matrix.

Usage

mxEvaluateOnGrid(algebra, abscissa)

https://openmx.ssri.psu.edu/documentation/

MxEXxpectation-class 153

Arguments
algebra the name of the single column matrix to be evaluated.
abscissa the name of the abscissa matrix. See details.

Details

The abscissa matrix must be in a specific format. The variables are in the rows. Abscissa row names
must match names of free variables. The grid points are in columns. For each point (column), the
free variables are set to the given values and the algebra is re-evaluated. The resulting columns are
collected as the result.

Value

Returns the collected columns.

Examples
library(OpenMx)

test2 <- mxModel("test2",

mxMatrix(values=1.1, nrow=1, ncol=1, free=TRUE, name="thang"),

mxMatrix(nrow=1, ncol=1, labels="abscissal”, free=TRUE, name="currentAbscissa"),
mxMatrix(values=-2:2, nrow=1, ncol=5, name="abscissa",
dimnames=list(c('abscissal'), NULL)),

mxAlgebra(rbind(currentAbscissa + thang, currentAbscissa * thang), name="stuff"),
mxAlgebra(mxEvaluateOnGrid(stuff, abscissa), name="grid"))

test2 <- mxRun(test2)
omxCheckCloseEnough(test2$grid$result, matrix(c(-1:3 + .1, -2:2 * 1.1), ncol=5, nrow=2,byrow=TRUE))

MxExpectation-class MxExpectation

Description

This is an internal class and should not be used directly.

154 mxExpectationBAS8 1

mxExpectationBA81 Create a Bock & Aitkin (1981) expectation

Description

Used in conjunction with mxFitFunctionML, this expectation models ordinal data with a modest
number of latent dimensions. Currently, only a multivariate Normal latent distribution is supported.
An equal-interval quadrature is used to integrate over the latent distribution. When all items use the
graded response model and items are assumed conditionally independent then item factor analysis
is equivalent to a factor model.

Usage

mxExpectationBA81(
ItemSpec,
item = "item",

L

gpoints = 49L,

gwidth = 6,
mean = "mean”,
cov = "cov",

verbose = 0L,

weightColumn = NA_integer_,
EstepItem = NULL,
debugInternal = FALSE

)
Arguments

ItemSpec a single item model (to replicate) or a list of item models in the same order as
the column of ItemParam

item the name of the mxMatrix holding item parameters with one column for each
item model with parameters starting at row 1 and extra rows filled with NA
Not used. Forces remaining arguments to be specified by name.

gpoints number of points to use for equal interval quadrature integration (default 49L)

gwidth the width of the quadrature as a positive Z score (default 6.0)

mean the name of the mxMatrix holding the mean vector

cov the name of the mxMatrix holding the covariance matrix

verbose the level of runtime diagnostics (default OL)

weightColumn the name of the column in the data containing the row weights (DEPRECATED)

EstepItem a simple matrix of item parameters for the E-step. This option is mainly of use
for debugging derivatives.

debugInternal when enabled, some of the internal tables are returned in $debug. This is mainly
of use to developers.

mxExpectationBAS8 1 155

Details

The conditional likelihood of response x;; to item j from person 4 with item parameters &; and
latent ability 6; is

L(wil¢,0,) = [[Pr(pick = 3515, 6:).
J

Items are assumed to be conditionally independent. That is, the outcome of one item is assumed to
not influence another item after controlling for £ and ;.

The unconditional likelihood is obtained by integrating over the latent distribution 6;,

L(zil¢) = / L(wi]€, 0:)L(6:)d0;.

With an assumption that examinees are independently and identically distributed, we can sum the
individual log likelihoods,

L= log L(x:¢).

Response models Pr(pick = z;;|§;,0;) are not implemented in OpenMx, but are imported from
the RPF package. You must pass a list of models obtained from the RPF package in the ‘ItemSpec’
argument. All item models must use the same number of latent factors although some of these
factor loadings can be constrained to zero in the item parameter matrix. The ‘item’ matrix contains
item parameters with one item per column in the same order at ItemSpec.

The ‘qpoints’ and ‘qwidth’ argument control the fineness and width, respectively, of the equal-
interval quadrature grid. The integer ‘qpoints’ is the number of points per dimension. The quadra-
ture extends from negative qwidth to positive qwidth for each dimension. Since the latent distribu-
tion defaults to standard Normal, qwidth can be regarded as a value in Z-score units.

The optional ‘mean’ and ‘cov’ arguments permit modeling of the latent distribution in multigroup
models (in a single group, the latent distribution must be fixed). A separate latent covariance model
is used in combination with mxExpectationBA81. The point mass distribution contained in the
quadrature is converted into a multivariate Normal distribution by mxDataDynamic. Typically mx-
ExpectationNormal is used to fit a multivariate Normal model to these data. Some intricate pro-
gramming is required. Examples are given in the manual. mxExpectationBA81 uses a sample size
of N for the covariance matrix. This differs from mxExpectationNormal which uses a sample size
of N —1.

The ‘verbose’ argument enables diagnostics that are mainly of interest to developers.

When a two-tier covariance matrix is recognized, this expectation automatically enables analytic
dimension reduction (Cai, 2010).

The optional ‘weightColumn’ is superseded by the weight argument in mxData. For data with many
repeated response patterns, model evaluation time can be reduced. An easy way to transform your
data into this form is to use compressDataFrame. Non-integer weights are supported except for
EAPscores.

mxExpectationBA81 requires mxComputeEM. During a typical optimization run, latent abilities
are assumed for examinees during the E-step. These examinee scores are implied by the previous

https://cran.r-project.org/package=rpf

156 mxExpectationBA81

iteration’s parameter vector. This can be overridden using the ‘Estepltem’ argument. This is mainly
of use to developers for checking item parameter derivatives.

Common univariate priors are available from univariatePrior. The standard Normal distribution of
the quadrature acts like a prior distribution for difficulty. It is not necessary to impose any additional
Bayesian prior on difficulty estimates (Baker & Kim, 2004, p. 196).

Many estimators are available for standard errors. Oakes is recommended (see mxComputeEM).
Also available are Supplement EM (mxComputeEM), Richardson extrapolation (mxComputeNu-
mericDeriv), likelihood-based confidence intervals (mxCI), and the covariance of the rowwise gra-
dients.

References
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters:
Application of an EM algorithm. Psychometrika, 46, 443-459.

Cai, L. (2010). A two-tier full-information item factor analysis model with applications. Psychome-
trika, 75, 581-612.

Pritikin, J. N., Hunter, M. D., & Boker, S. M. (2015). Modular open-source software for Item Factor
Analysis. Educational and Psychological Measurement, 75(3), 458-474

Pritikin, J. N. & Schmidt, K. M. (in press). Model builder for Item Factor Analysis with OpenMXx.
R Journal.

Seong, T. J. (1990). Sensitivity of marginal maximum likelihood estimation of item and ability
parameters to the characteristics of the prior ability distributions. Applied Psychological Measure-
ment, 14(3), 299-311.

See Also
RPF

Examples

library(OpenMx)
library(rpf)

numItems <- 14

Create item specifications

spec <- list()

for (ix in 1:numItems) { spec[[ix]] <- rpf.grm(outcomes=sampl